

Preliminary In Vivo and Ex Vivo Assessment of MRI Artifacts from Biodegradable Mg-10Gd Implants: Implications for Alloy Design and Imaging Protocol Optimization

Yu Sun^{1†*}, Aaron Diercks^{2†}, Olga Will², Heike Helmholz¹, Berit Zeller-Plumhoff^{1,3}, Jan-Bernd Hövener², Regine Willumeit-Römer¹

- ¹ Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Geesthacht, 21502, Germany
- ² Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Kiel, Germany
- ³ Data-Driven Analysis and Design of Materials, Faculty of Mechanical Engineering and Marine Technologies, University of Rostock, Germany
- [†] These authors contributed equally.
- * Email: yu.sun@hereon.de

Introduction (Motivation)

- * MRI is critical for preoperative evaluation of musculoskeletal diseases and early detection of postoperative complications (e.g., fracture nonunion).
- * Conventional metallic implants (e.g., titanium, stainless steel) create severe MRI artifacts, compromising image quality.
- * Biodegradable Mg-based implants produce fewer artifacts than titanium, enabling clearer assessment of tissue—implant interfaces.
- * Some alloying elements, notably gadolinium (Gd), may increase artifact susceptibility.
- * Study aim: characterize MRI artifact profiles of Mg-10Gd implants using in vivo cortical bone fracture healing models and ex vivo trabecular bone samples.

Materials and Methods

Animal model

- * Female Sprague-Dawley rats (n = 6), femoral osteotomy
- * Intramedullary cylindrical Mg-10Gd pins (Ø 1.2 mm imes 5 mm)
- * 12 weeks postoperative: micro-CT + T1-RARE MRI.

Ex vivo study

- * Chicken humerus (n = 3)
- * Transcortical implants: pure Mg, Mg-10Gd, PEEK implants
- * Imaging with T2-RARE MRI; micro-CT as reference.

Imaging system

- * 7 Tesla small animal MR system (Bruker BioSpec).
- * vivaCT 80 micro-CT (Scanco Medical AG).

Results

In vivo T1-RARE MRI (Fig.1)

- * Signal voids around Mg-10Gd \rightarrow localized susceptibility artifacts.
- * Artifacts obscured peri-implant cortical bone & adjacent tissues.
- * Micro-CT showed clear visualization of cortical bone + implant.

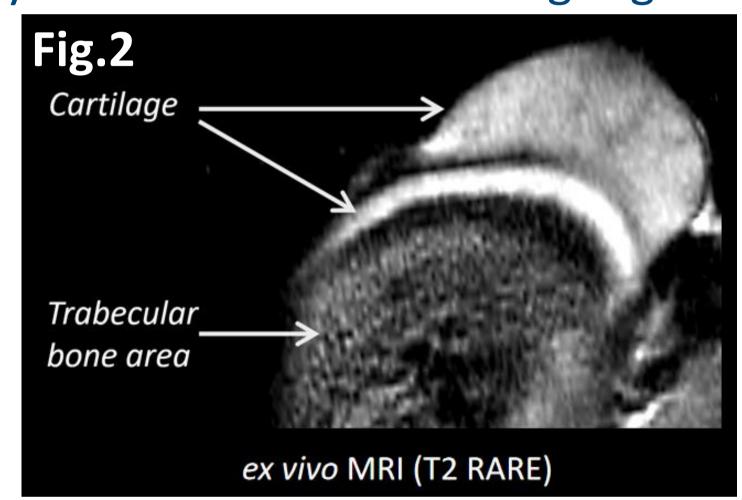
Ex vivo T2-RARE MRI I (Fig.2, Fig.3)

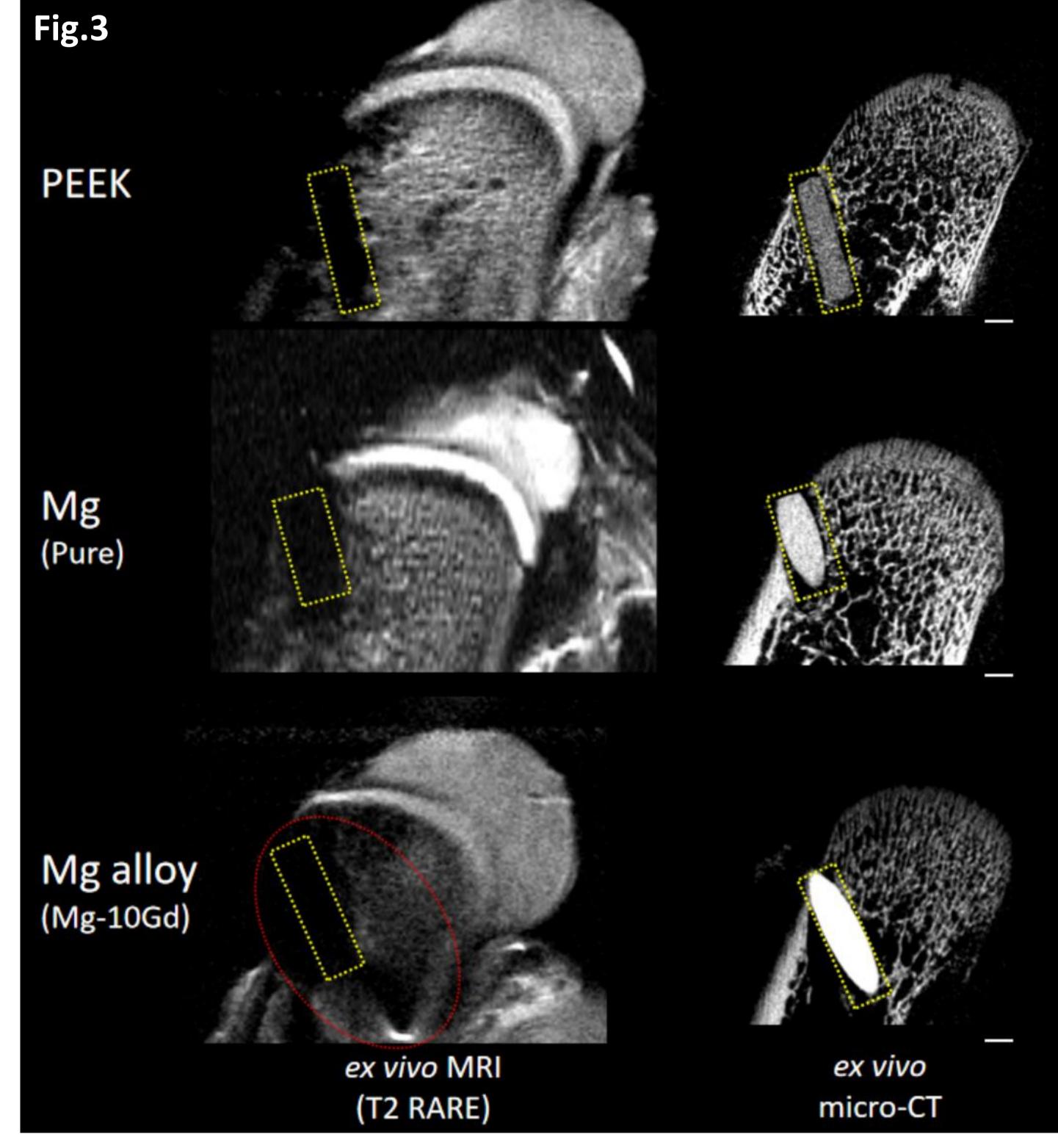
- * No hardware: clear visualization of cartilage + trabecular region.
- * Pure Mg & PEEK: minimal artifacts / structures clearly visible.
- * Mg-10Gd: more pronounced artifacts: signal distortion and loss, obscuring adjacent trabecular structures.

Discussion

Problems


- * Magnetic susceptibility mismatch between Mg-10Gd and tissue, causing field inhomogeneities, misregistration, signal voids, may hinder assessment of osseointegration & local tissue responses.
- * Particularly affects FSE-based sequences (e.g., RARE).


Future directions


- * Test broader sequence range for artifact mitigation.
- * Evaluate RF-induced heating of Mg implants during MRI.

Conclusion

- * Mg-10Gd implants induce regional artifacts in T1- & T2-RARE scans
- * Findings underscore the need for alloy-specific artifact evaluation.
- * Protocol adaptation: necessary for rare-earth containing Mg alloys.

Reference: [1] Sun Y, et al. Biomater Sci. (2022) 10:1532-1543. [2] Espiritu J, et al. Bioact Mater. (2022) 15:382-391. [3] Lu W, et al. Magn Reson Med. (2009) 62:66-76. [4] Filli L, et al. Invest Radiol. (2017) 52:381-387. [5] Espiritu J, et al. Bioact Mater. (2023) 25:86-94.

Acknowledgement: This work was supported by the IDIR-Project (Digital Implant Research), a cooperation financed by Kiel University, University Hospital Schleswig-Holstein and Helmholtz Zentrum Hereon.