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Abstract: Designing and conducting experiments is a fundamental process across var-
ious scientific disciplines, such as materials science, biology, medicine, and chemistry.
However, experimental research still predominantly relies on traditional, time-consuming,
resource-intensive, and costly trial-and-error experimentation approaches that hinder rapid
discovery, reproducibility, and scalability. Recent advances in artificial intelligence (AI)
and machine learning (ML) offer promising alternatives, but a comprehensive overview
of their implementations in experimental design is lacking. This research fills this gap
by providing a structured overview and analysis of existing frameworks for Al-driven
experimental design, supporting researchers in selecting and developing suitable Al-driven
approaches to automate and accelerate their experimental research. Moreover, it discusses
the current limitations and challenges of Al techniques and ethical issues related to Al-
driven experimental design frameworks. A search and filter strategy is developed and
applied to appropriate databases with the objective of identifying the relevant literature.
Here, active learning, particularly Bayesian optimization, stands out as the predominantly
used methodology. The majority of frameworks are partially autonomous, while fully
autonomous frameworks are underrepresented. However, more research is needed in the
field of Al-driven experimental design due to the low number of relevant papers obtained.

Keywords: Al-driven; experimental design; autonomous; optimization; active learning

1. Introduction

In recent years, the integration of artificial intelligence (AI) into real-world applications
has gained significant attention, especially after the introduction of large language models
(LLMs) such as ChatGPT4, which have demonstrated capabilities in natural language
understanding, rapid data analysis, and knowledge synthesis. These advancements reflect
a broader trend: Al systems are increasingly capable of supporting complex cognitive and
decision-making tasks across diverse domains [1]. This trend has also found its way into
scientific research, where Al is not only used for data analysis and modeling but is also
beginning to reshape how experiments are designed and conducted [2].

Traditionally, scientific experimentation, particularly in fields such as biology, chem-
istry, and materials science, has relied on human intuition and iterative, time-consuming
trial-and-error processes [3]. In such domains, selecting the right experimental parameters
from a vast and multidimensional space is a major challenge, often limiting the pace and
scope of discovery.

Leveraging Al for experimental design offers outstanding advantages over this method
of human-based experimentation. Al can model complex relationships between parameters
and outcomes, propose efficient experimental strategies and continuously improve by
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learning from previous results. A sketch of the Al-driven experimental design workflow
can be found in Figure 1.
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Figure 1. Schematic illustration of the Al-driven experimental design workflow. Available experi-
mental data are used to train Al The scientist defines an experimental objective, and Al suggests
experimental designs to the scientist accordingly or performs them autonomously.

As a result, experiments can be performed precisely and efficiently, saving time and
material by avoiding unnecessary trials. Consequently, there are reductions in cost for both
experiments and potentially environmentally hazardous waste. In combination with an
autonomous platform incorporating an experimentation and analysis stage, experiments
can be performed autonomously. This concept is referred to in the literature as a “self-
driven laboratory” (SDL) [4]. The autonomous execution and analysis of experiments
further enhance the reproducibility of experiments and continuous experimentation, ideally
operating without the need for human intervention. SDLs for different applications have
been reported [2,4-14].

The literature incorporates various reviews highlighting the role of Al in accelerating
scientific research across diverse fields with a particular focus on Al-driven experimental
design [2-13,15-17]. Some reviews related to Al-driven experimental design target a specific
domain, such as organic/inorganic semiconductors (materials science) or drug formulation
(medicine), providing architectures or frameworks that are intended to be applied in the
addressed field. Others concentrate on a specific technique, such as LLMs. The majority of
reviews focus on self-driving laboratories rather than Al-human frameworks. Currently,
the literature lacks a cross-domain perspective and merely provides general overviews
and analyses of existing frameworks for Al-driven experimental design across different
domains. Thus, an outline of applied Al methodologies in experimental design is missing.
Furthermore, previous reviews overlook key aspects such as the degree of automation,
online capability, and generalizability of Al frameworks.

In contrast, this study highlights the current state of Al-driven experimental design
by analyzing existing approaches and frameworks. This encompasses both the Al tech-
niques used in experimental design and the applied frameworks in general. In terms of
a generic analysis of the framework, different aspects are considered. This includes the
scientific domain, the degree of automation, the kind of data, and online and generalization
capabilities. Additionally, the limitations and challenges of current AI methodologies, as
well as explainability and ethical issues, are considered and discussed. By analyzing the
existing literature accordingly, this research aims to guide researchers in identifying an
ideal Al-driven experimental design system to accelerate their experimentation processes
and, thus, their scientific research.
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This study is structured as follows. The first part explains the methodology of the
research, incorporating the search and filter strategy as well as the used taxonomy to
guide the investigation of the filtered contributions. The second part covers the results and
provides a discussion, while the third part concludes with the findings of this study.

2. Methodology

This section outlines the methodology used to conduct the systematic literature review
of Al-driven experimental design. A search strategy is developed to clearly define the
scope of this study. Relevant scientific databases are selected and queried using a carefully
designed search query. Appropriate filters are applied to ensure the inclusion of only
relevant publications while excluding non-relevant ones. The resulting set of contributions
is then investigated using a well-defined taxonomy, leading to a structured and consistent
analysis of the included studies. A sketch of the applied methodology can be found in
Figure 2.

Methodology

Search Strategy

|

Database Selection

|

Search Query

y

Filtering

)
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Domain Al Methodology Automation

Data Generalization Online Capability

Figure 2. Schematic illustration of the applied methodology.

2.1. Search Strategy

To efficiently guide this study’s research toward the desired search space and exclude
non-relevant publications, the subsequent search strategy is applied. It follows Piliuk and
Tomforde [1] and encompasses the following steps:
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1. Define research questions for guiding the systematic research.
Create an appropriate search query by defining meaningful search terms and assessing
relevant databases.

3. Determine filter criteria to exclude non-relevant studies.

4. Apply the filter criteria through appropriate procedures.

To guide the literature research of this study, the following research questions are
defined:

1. Inwhich research fields and kinds of applications are Al techniques used to automate
experimental design?

Which quantitative methods are used to implement Al in experimental design?
Which tasks in the experimental design process are addressed by these techniques?
What kind of data are used?

Are the proposed frameworks online-capable, and can they generalize well to new data?

O N

The first question aims to identify the fields and applications in which Al-driven exper-
imental design is applied. The second question aims to investigate which Al methodology
is employed to ensure that the scope of the research lies within Al-driven experimental
design. The objective of the third question is to examine which experimental design tasks
within the experimental design process are addressed using Al methodologies. The fourth
question addresses the data utilized, while the fifth question aims to analyze the online
and generalization capabilities of the proposed frameworks. The publications included in
this research are intended to answer these questions in order to provide a comprehensive
overview of Al-driven experimental design. Thus, this study investigates various databases
to ensure a comprehensive and balanced review of the existing literature, covering both
method-specific and subject-specific resources.

Databases typically accepted in the field of Al, such as the ACM Digital Library and
IEEE Xplore, are included. Additionally, subject-specific and experimental design-related
resources, like ACS Publications and RSC Publishing, which focus on biology, chemistry,
and materials science, are examined. To incorporate medicine-related publications, PubMed
is also considered. Furthermore, general databases, including ScienceDirect and Springer-
Link, are utilized to broaden the scope of the research. This selection of databases—two
focused on Al, two on materials science, biology, and chemistry, one on medicine and biol-
ogy, and two general repositories—ensures a broad and diverse overview of the relevant
literature regarding Al-driven experimental design, balancing method-specific resources of
Al research with subject-specific studies in experimental design while disregarding those
with a very limited application focus or low popularity.

The assessed databases are queried by applying an appropriate search query. It com-
bines various meaningful search terms. Using a search query ensures the reproducibility of
our research. For this work, a search query is experimentally derived, and the following
combinations of search terms were found to yield the best results for relevant studies:
“artificial intelligence” AND “driven” AND (“experiment planning” OR “experiment selection”
OR “experiment parameter adaption”). The first part of the query (“artificial intelligence”
and “driven”) narrowed the search to publications that apply Al methodologies. Thus,
the authors of this research could focus on intelligent, automated solutions and omit man-
ual, hand-optimized approaches. During the development of the search query, it was
found that using the term “artificial intelligence” consistently included all relevant pub-
lications identified in this study. In contrast, replacing it or adding other terms, such as
“machine learning”, “deep learning”, or “automation”, either excluded relevant studies
or significantly increased the inclusion of non-relevant publications. Therefore, “artificial
intelligence” was retained as the primary term to ensure both coverage and precision in the
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literature search. The same development and trade-off strategy was applied to the other
terms in the final search query.

The second part ensured that the scope of the contributions included experimental
design and, therefore, set appropriate research boundaries. Thus, terms typically related to the
experimental design process were identified and used accordingly. By applying the mentioned
search query to the aforementioned databases, a well-functioning trade-off between obtaining
less relevant contributions and too many non-relevant publications was achieved.

The proposed search strategy resulted in 329 contributions. Consequently, the search
space was set to the period from 2000 to 2025, which led to the exclusion of 61 contributions.
In addition, duplicate publications, which occurred in multiple databases, covering 14 publica-
tions and 20 non-research-based results, such as tables of contents, lists of references, or whole
proceedings, were removed. Thus, 234 contributions were obtained and further investigated.

2.2. Filtering

This section discusses the filtering of relevant publications from the pool of contribu-
tions obtained by applying the aforementioned search query. Several filter criteria (FC) were
applied to obtain the relevant publications that addressed the defined research questions
and excluded the non-relevant ones.

First, to ensure a focus on concrete Al-driven experimental design solutions with
corresponding results, the scope of relevant studies was limited, disregarding preliminary
concepts and ideas. Thus, reviews, abstracts, concept papers, pre-prints, etc., were excluded
(FC1). In addition, papers that did not propose quantitative Al-based methodologies but
instead focused solely on statistical methods without a learning component were excluded
(FC2). Furthermore, papers that failed to provide a clear explanation of the quantitative
algorithms employed were also filtered out.

Apart from that, all studies that did not focus on or explicitly mention experimental
design were excluded (FC3). This encompassed the use of Al for tasks within the experimental
design process, such as planning, selecting, and optimizing; experiments and experimental
parameters or conditions for decision-making; and the assessment of new experiments to
perform next. Thus, papers that presented, for instance, the pure discovery of new materials
without focusing on experiments and their parameters, were filtered out. If a different or
updated version of a publication was proposed, only the newer version was included (FC4).

The filtering procedure was performed from FC1 to FC4 in an iterative manner. The
papers under investigation were included until the filter criteria had been applied, after
which certain publications could be excluded. The filter strategy and the filter criteria were
applied to the 234 obtained publications, resulting in 22 relevant papers. In Table 1, the
distribution of the excluded papers is shown in relation to the filter criteria applied.

Table 1. Number of studies excluded after applying each filter criterion.

ID Criterion # Studies Excluded
FC1 No concrete solution 104
FC2 No Al technique 54
FC3 Does not focus on experimental design 55
FC4 Selection of another version 0

Due to the niche of Al-driven experimental design, only a small number of contribu-
tions were included. Figure 3 presents the distribution of the 22 relevant papers by year in
comparison with the 234 pre-filtered publications.

The figure illustrates the recent rise of Al in scientific research, with a particular focus on
Al-driven experimental design. It is important to note that while earlier periods are grouped
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into full-year ranges (e.g., 2021-2023), the most recent data cover only 2024 and the beginning
of 2025 (2024-2025). As a result, the apparent decline in the number of papers in the period
2024-2025 is due to incomplete data and a shorter interval rather than to a decrease in interest
in Al. However, the figure indicates growing attention to Al-driven experimental design, as
even within the shorter period of 20242025, an emerging trend can be observed.
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Figure 3. The distribution of all publications before filtering and after filtering.

2.3. Application of Filter Criteria

In order to improve the comprehensibility of the filtering process, this section provides
a detailed explanation of the reasons leading to the exclusion of publications based on each
filter criterion. An overview of the 212 excluded publications with respect to each criterion
can be found in Table 2.

Table 2. Overview of publications excluded based on each filter criterion.

ID  Criterion # Studies Excluded
FC1 No concrete solution [2-10,12-106]
FC2 No Al technique [107-160]
FC3 Does not focus on experimental design [161-215]

FC4 Selection of another version

2.3.1. Filter Criterion 1

Since the goal of this study is to discover an ideal framework for Al-driven experimental
design, publications that did not propose a concrete solution by presenting or implementing a
novel method, algorithm, framework, or system were excluded. This encompassed, for example,
publications that only provided an overview of the literature and the corresponding state of the
art, such as reviews [3-7,9,11-13,15-17,21,41,44,58,61,74,87,98,103]. As a specific example, the
review proposed by Su et al. [3] discussed the current state of LLMs for catalyst design.

Furthermore, FC1 also filtered out papers that only proposed ideas and theoretical frame-
works, such as perspective papers [2,8,10,19,25-27,30,33,39,40,43,46,47,49,51,65,78,79,84]. For
example, a perspective paper was presented by Hysmith et al. [2] that discussed the future
of self-driving laboratories.

2.3.2. Filter Criterion 2

This research focuses on Al-driven experimental design. Consequently, frame-
works that did not leverage Al or machine learning techniques, such as rule-based
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systems (e.g., hard-coded decision rules or hand-crafted expert systems without learn-
ing or adaptation) or classical optimization algorithms without learning capabilities
(e.g., grid search, brute-force search, or exhaustive enumeration) were excluded from
this study. Only frameworks that incorporated models capable of learning from data
were considered. Thus, publications that did not leverage Al methodologies, such
as [107,108,111,117,120,124-126,131,133,136-139,142,153], were excluded. For example,
Wang et al. [125] presented an approach for promoting molecules selectively to chemically
active energy levels, without applying Al methodologies. In addition, papers that did not
explain the underlying methodology in detail, such as Guevarra et al. [116], were excluded.

2.3.3. Filter Criterion 3

FC3 was used to exclude publications that presented a concrete solution based on Al
methodologies but did not target experimental design, such as [161-171]. For example, a
framework was proposed by Amuzuga et al. [171] that used AI methodologies, but instead
of focusing on experimental design, AI was used for metamodeling to estimate the fatigue
life of a welded joint.

In addition, publications that exclusively focused on the discovery of materials, such
as [193,216], or drug combinations, such as [182], in terms of only predicting appropriate
output combinations without including the experimental parameters, were excluded.

2.3.4. Filter Criterion 4

As a result of filter criteria FC1-FC3, there were no remaining publications that existed
in different versions, leading to zero exclusions due to FC4.

2.4. Taxonomy

This study aims to review the current state of research in Al-driven experimental
design. To achieve this, the selected studies were carefully analyzed, based on the following
taxonomy. By applying this taxonomy to the relevant contributions, the defined research
questions could be addressed. Consequently, six taxonomy categories were chosen: domain
of application, AI methodologies for experimental design, degree of automation, kind of
data, online-capable, and generalization capability.

On a surface level, the contributions were examined by highlighting the fields and
domains in which machine learning techniques or Al have been applied for experimental
design. Therefore, a distinction between generic and subject-oriented frameworks could be
made. Thus, the main fields of interest for Al-driven experimental design were determined.

By delving deeper, the contributions were investigated regarding the Al methodology
used. Since the goal of this research is to provide a comprehensive overview of Al-driven
experimental design, a key focus is to analyze the specific tasks within the experimental
design process for which these AI methodologies were applied. Furthermore, the degree
of automation of the reviewed frameworks was analyzed by classifying them into three
categories: fully autonomous, partially autonomous, and supportive. In addition, the
kind of data was investigated to identify those typically utilized in experimental design
applications. Moreover, online-capable and generalizable frameworks were identified.
While the former is necessary for adapting experiments on the fly, the latter offers the
possibility to use a framework in different experimental design applications.

3. Results

This section discusses the results obtained from analyzing the pool of 22 relevant
studies after carefully applying the previously defined taxonomy. A list of studies with
respect to the key points investigated is provided in Tables 3 and 4.
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Table 3. Overview of the analyzed papers regarding domains, applications, techniques, and tasks.

Authors Domain  Application Technique Task
Aldeghietal. [217] General = Chemistry Tree-based regres- Assistance in robustness estima-
frame- sion tion
work
Hickman et al. General  Chemistry BO Optimization of experimental
[218] frame- constraints
work
Schilter et al. [219]  Chemistry Optimization of different BO Selecting experiments and opti-
terminal alkynes’ reaction mizing experimental design
routes
Sadeghietal. [11] = Materials Nano-manufacturing of BO Selecting experiments and opti-
science lead-free metal halide mizing experimental design
perovskite nanocrystals
Epps et al. [220] Materials Microfluidic material syn- Single-period RL Surrogate model determines the
science thesis + surrogate model feasibility of experimental pa-
(Naive classifier + rameters and predicts output; RL
GPR) selects experiments
Plommer et al. Biology Extraction of cannabi- RF Prediction of experimental yields
[221] noids under different experiment con-
ditions; assistance in decision-
making
Eyke et al. [222] Chemistry Reduction of reaction AL: ENN; single- Selecting experiments and opti-
screening trained models mizing experimental design
with MC dropout
masks
Adams et al. [216] Materials Composition-structure BO Selecting experiments and opti-
science phase mapping mizing experimental design as-
sisted by humans
Waelder et al. [223] Materials Carbon nanotube growth ~ AL: Jump regres- Selecting experiments and opti-
science sion surrogate mizing experimental design
Yoon et al. [224] Materials High-throughput electri- RF classifier + Classifier excludes low conduc-
science cal conductivity optimiza- LASSO regression  tivity material; regressor predicts
tion and discovery of experimental output
doped conjugated poly-
mers
Fu et al. [225] Fabrication Quality control for probe GA (fitness func- Selecting experiments and opti-
precision forming in semi- tion: PLSR) mizing experimental design
conductor manufacturing
Lai et al. [226] Materials Catalyst design and opti- LLM + BO LLM extracts process data; BO se-
science mization lects experiments and optimizes
experimental design
Yonge et al. [227] Chemistry Temporal analysis of prod- Model-based de- Selecting experiments and opti-
ucts sign of experiments mizing experimental design
Almeida et al. [228] Chemistry Sustainable chemistry pro- MOBO, AL: RF Selecting experiments and opti-

cesses

mizing experimental design
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Table 3. Cont.

Authors Domain  Application Technique Task
Almeida et al. [229] Chemistry Reaction optimization us- AL: RF Selecting experiments and opti-
ing kinetic modeling mizing experimental design
Bosten et al. [230] Chemistry Liquid chromatography = Assisted AL Selecting experiments and opti-
mizing experimental design
Liang et al. [231] Materials Synthesis optimization BO Selecting experiments and opti-
science for formulation of en- mizing experimental design
zymes/ZIFs (zeolitic
imidazolate framework)
Cruse et al. [232] Materials Formation of impurity DT classifier Prediction of experimental out-
science phases in BiFeO3 thin-film put based on various conditions
synthesis
Dama et al. [233] Biology Microbial ~ metabolism Multi-period RL Selecting experiments and opti-
mapping mizing experimental design
Suvarna et al. [234] Chemistry High-performance cat- MOBO Selecting experiments and opti-
alyst development for mizing experimental design
higher alcohol synthesis
Chen et al. [235] Biology Guidance  of  high- AL: Matrix comple- Selecting experiments and opti-
throughput screening tion mizing experimental design
Orouji et al. [31] Chemistry Optimization of transi- MOBO + EDNN Selecting experiments and opti-

tion metal-based homoge-
neous catalytic reactions

(Ground-truth sim-
ulator for evalua-

tion)

mizing experimental design us-
ing MOBO, with evaluation by
EDNN

Table 4. Overview of the analyzed papers regarding automation, data, online capability, and generalizability.

Authors Automation Data Online- Generalizable
Capable

Aldeghi et al. [217]. Supportive Reaction data Yes Yes

Hickman et al. Partially au- Reaction data Yes Yes

[218] tonomous

Schilter et al. [219]  Fully autonomous  Reaction data Yes Limited to different re-
actions

Sadeghietal. [11]  Fully autonomous  Synthesis data Yes Limited due to fluidics
lab platform

Epps et al. [220] Fully autonomous  Synthesis data Yes Limited to flow chem-
istry

Plommer et al. Supportive Extraction data and condition No Yes

[221] data

Eyke et al. [222] Partially au- Reaction data Yes Yes

tonomous
Adamsetal. [216]  Partially au- X-ray diffraction data Yes Limited to domain ex-
tonomous perts
Waelder et al. [223]  Fully autonomous  Catalyst reaction data and Ra- Yes Limited to catalyst re-
man spectrum search
Yoon et al. [224] Supportive Optical spectra and process data No Yes
Fu et al. [225] Partially au- Quality and process data Yes Yes

tonomous
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Table 4. Cont.

Authors Automation Data Online- Generalizable
Capable

Lai et al. [226] Partially au- Text data and catalyst synthesis  Yes Yes
tonomous data

Yonge et al. [227] Partially au- Kinetic process data Yes Yes
tonomous

Almeida et al. [228] Partially au- Reaction data Yes Yes
tonomous

Almeida et al. [229]  Partially au- Reaction data Yes Yes
tonomous

Bosten et al. [230] Partially au- Chromatography data Yes Yes
tonomous

Liang et al. [231] Partially au- Synthesis data Yes Yes
tonomous

Cruse et al. [232] Supportive Synthesis data No Yes

Dama et al. [233] Fully autonomous  Growth data Yes Yes

Suvarna et al. [234]  Partially au- Reaction data Yes Yes
tonomous

Chen et al. [235] Partially au- Condition data Yes Yes
tonomous

Orouji et al. [31] Partially au- Catalyst reaction data Yes Limited to catalyst re-
tonomous search

The following sections focus on specific aspects found in the tables.

3.1. Domains of Application

Al-driven experimental design has been used in several domains to accelerate ex-
periments, although general frameworks have also been proposed. In order to make the
research comprehensible, the relevant contributions were classified into five classes based
on the domains of the included contributions: general frameworks, biology, chemistry, ma-
terials science, and fabrication. The distribution of the defined domains in which Al-driven
experimental design has been applied can be found in Table 5.

Table 5. Number of papers per domain.

Domain Amount

General frameworks
Biology

Chemistry

Materials science
Fabrication

— 0 O W -

The table shows that Al-driven experimental design has mostly been applied in chem-
istry and materials science. This may be because these domains typically involve a large
number of experiments with high-dimensional parameter spaces. In terms of chemistry,
the main interest lies in reaction optimization and chemical synthesis. In materials science,
Al methodologies have mostly been used in the context of materials synthesis and opti-
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mization. Although a medicine-specific database was included in this research, there were
no reviewed frameworks that passed the exclusion criteria.

3.2. Al Methodologies for Experimental Design

This section examines the machine learning and Al methodologies employed in the
reviewed literature for experimental design, offering an overview of their implementations.
For this study, the methodologies are grouped into four categories: optimization, super-
vised learning, active learning (AL), and reinforcement learning (RL). A sketch of these
methodologies can be found in Figure 4.

Al

OptimizatiorD ( RL ) ( AL ) (Supervised

( GA )( BO ) ( SPRL )( MPRL ) (Various) }Regression&@assiﬂcaﬁo@( LLM )
(PR ) (1ASSO) (T-based) (N. Bayes) (T-based) ChatGPT)

Figure 4. An overview of the different Al classes, methodologies, and techniques used in this survey.

These categories were defined based on their primary functional objectives. Optimiza-
tion refers to algorithms whose core purpose is to iteratively improve a target outcome but
may not necessarily be efficient, such as Bayesian optimization (BO) and genetic algorithms
(GAs). Supervised learning refers to models trained on labeled datasets to predict or classify
outcomes, such as regression and classification models. AL incorporates methods that use
models to select data points (experiments) that are most informative for improving the
model. It aims to enhance the learning process by reducing the amount of data required for
effective model training. RL encompasses methods in which agents learn optimal actions
through interaction with an environment using reward signals.

While there is an acknowledged conceptual overlap among these categories, partic-
ularly between optimization and active learning, this study adopted a function-oriented
classification and did not aim to clearly distinguish the different classes using explicit
definitions. Table 6 shows the number of Al techniques found in the reviewed literature
under each category. The numbers in parentheses represent techniques used independently
without being combined with other techniques.

Table 6. Categorical breakdown of applied AI methodologies with their frequency of occurrence.
Methodologies that are part of another methodology, such as regression surrogates in BO, are not
considered separately. The numbers in parentheses stand for the number of methodologies used
independently, without being combined with another methodology.

Category Total Number (Separate)
Optimization 10 (9)
Supervised 8 (3)
AL 5(5)
RL 2(1)

It can be observed that optimization and AL methodologies were used most frequently,
especially as standalone approaches. In contrast, supervised techniques were combined with
other methodologies for experimental design. By delving deeper into the methodologies to
identify the utilized techniques, we have obtained the results shown in Table 7.
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The table shows that the most widely applied technique was BO, followed by regression
and classification methods. Various AL methodologies were employed, among them machine
learning and non-machine learning techniques, but each technique only occurred once.

The implementation of the identified techniques is highlighted in the following by
example frameworks. A distinction between single and hybrid approaches is made.

Table 7. Overview of methodologies used. Methodologies that are part of another methodology, such
as regression surrogates in BO, are not considered separately.

Methodology Number

BO

GA

GP regression
Tree-based regression
Tree-based classifier
Naive Bayes Classifier
LLM

LASSO regression

AL

RL

\©

N U, R R, NDNRPR -

3.2.1. Single Approaches

Based on the above-mentioned Al methodologies, various frameworks were found
that incorporated a single technique. This section discusses some example frameworks,
categorized by Al classes.

Optimization:

Several frameworks found in the contributions were based on BO for optimizing ex-
periments or process parameters and selecting new experiments accordingly in an iterative
manner; the implementations were mostly similar. For example, an approach for single-
objective BO was proposed by Sadeghi et al. [11]. Here, an ensemble neural network (ENN)
surrogate model was used for predicting the in-flow synthesis of Cu-based, lead-based metal
halide perovskite nanocrystals. As a decision policy and acquisition function, expected im-
provement (EI) was proposed by the authors. In contrast, Suvarna et al. applied a combination
of El and predictive variance (PV) as an acquisition function to develop high-performance
catalysts for higher alcohol synthesis, using a Gaussian process (GP) surrogate model.

Regarding GAs, the framework presented by Fu et al. [225] uses partial least squares re-
gression (PLSR) and a GA for quality control in semiconductor manufacturing. The PLSR is
applied to predict the experimental results and, thus, serves as a fitness function for the GA.

Supervised Learning:

Plommer et al. [221] proposed a supervised-based framework employing a random
forest (RF) to predict the experimental or process output, aiming to optimize the extraction
process of cannabinoids and predict the yields and extraction outcomes under different
conditions. Thus, the selection of optimal process conditions and the exploration of unseen
extraction yields could be achieved.

The general framework “Golem” developed by Aldeghi et al. [217] utilizes a tree-
based regression model as a surrogate model to estimate robustness against variability
in experimental conditions, such as noise or changing laboratories. In combination with
optimization methods such as BO or GA, it supports the optimization of conditions and
the selection of robust experiments to achieve reproducible results.

Another supervised learning approach presented by Cruse et al. [232] employs deci-
sion tree (DT) models to predict the experimental output of several synthesis conditions in
terms of the formation of impurity phases in BiFeO3 thin-film synthesis.
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Active Learning:

Various approaches have applied AL techniques to experimental processes. The
experimental results of the obtained data are fed back to train the models, improving and
optimizing the yield of the experimental output.

Eyke et al. [222] proposed a framework for predicting the reaction yield and for
selecting experiments and reactions, which are the most uncertain for the predictive model,
for the reduction of reaction screening. A single-trained model with applied Monte Carlo
(MC) dropout masks and an ENN is used to estimate uncertainty. The ENN performed
slightly better, depending on the specific task.

Similarly, Almeida et al. [229] presented an AL framework for reaction optimization,
which predicts the reaction yield and estimates uncertainty, but it is based on RF regression.
The AL methodologies were utilized to optimize reactions and concrete in a case study
for optimizing a Pd-catalyzed C-H arylation reaction. To select experiments to perform,
an exploration—exploitation strategy is employed based on prediction and uncertainty
estimation. For the first three iterations, an exploration algorithm is used, while the
subsequent iterations follow an exploitation algorithm based on selecting reactions with
the lowest variance obtained among the top five reactions regarding the yield.

A different approach proposed by Waelder et al. [223] regarding carbon nanotube
growth uses a surrogate jump regression model-based methodology for predicting the
reaction yield and estimating uncertainty. The selection of experiments is performed on the
basis of an exploration and exploitation strategy. While Latin hypercube sampling (LHS) is
employed for the exploration phase, the maximum yield is used for the exploitation phase.

Chen et al. [235] presented a framework for selecting experiments in the case of
high-throughput screening based on margin sampling. A categorical matrix completion
algorithm is utilized to estimate uncertainty.

Both [216] and Bosten et al. [230] proposed assisted AL frameworks. The former
approach applies BO for selecting experiments in an iterative manner with regard to
composition—structure phase mapping. Thereby, humans can add informative input to
guide and further optimize the algorithm. The latter uses a retention model to predict
the yield and estimate the associated uncertainty for experimental results in the case of
liquid chromatography. Subsequent experiments are selected iteratively, prioritizing those
expected to maximize information gain or reduce the model’s uncertainty. The assisted
part encompasses the integration and guidance of external sources to achieve an efficient
learning process and support the proper selection of experiments, especially in the initial
phase of experimentation. Herein, prior knowledge and experimental data are integrated
into the retention model through Bayesian statistics.

Reinforcement Learning:

Dama et al. [233] presented an RL framework called “BacterAl” for investigating
combinations of amino acids that support the growth of different bacteria. Bacter Al works
without prior knowledge and is therefore perfectly suitable for transfer learning. The
approach consists of two agents. One incorporates a neural network (NN) surrogate model
for predicting the experimental output and the fitness of the chosen condition parameter.
An MC search policy-based rollout algorithm is used for the trade-off between exploitation
and exploration. The other agent consists of a GA that aims to find human-interpretable
rules for the obtained experimental results from the NN-based agent.

3.2.2. Hybrid Approaches

Optimization and Supervised Learning:
In their work, Lai et al. [226] presented a framework for catalyst design and optimiza-
tion. The authors employed an LLM equipped with a multi-objective Bayesian optimization
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(MOBO) approach. The LLM serves as an experimental design preparation stage and is
used to identify processes and their relevant parameters in the provided raw texts. The
texts are automatically filtered from the scientific literature by a keyword-based search.
The LLM applied is a ChatGPT model. BO is then utilized to optimize the surrogate model
and the experimental parameters and select new experiments to perform, based on the
acquisition function. A GP regression model is used as the surrogate model, while EHI is
applied as the acquisition function. To enhance the learning process at the beginning of the
optimization, experiments are initially selected by LHS.

Supervised Learning and Supervised Learning:

Yoon et al. [224] proposed an approach for electrical conductivity optimization and
discovery of doped conjugated polymers based on two supervised learning methods.
It consists of an RF classifier to filter out materials with low conductivity and a least
absolute shrinkage and selection operator (LASSO) regression model, which determines
the conductivity and the experimental results, respectively, using different descriptors as
input, such as spectral, process, material, and measurement descriptors.

Reinforcement Learning and Supervised Learning:

Epps et al. [220] proposed a framework for accelerating microfluidic material synthesis,
consisting of RL and supervised learning. The framework combines a single-period horizon
strategy with a surrogate model. The surrogate model includes, among others, a naive
Bayes classifier to determine the feasibility of the experimental parameters and a GP
regression-based model to predict the output. The RL approach consists of a belief model,
an objective function, and a decision policy. An ENN is used as the belief model and
trained to predict three output parameters based on the output of the surrogate model. The
objective function uses a multi-objective strategy based on the weighted mean-utility or
probability sampling to turn the prediction into a single quality value. This quality value is
used to adjust the decision policy based on EI and, thus, new experiments are selected. The
obtained experimental results are used to further improve the models.

3.2.3. Summary

This section summarizes the findings of the analysis regarding the applied techniques.
In Table 8, an overview of the employed techniques and the corresponding experimental
design tasks is provided.

Table 8. Overview of techniques used for Al-driven experimental design.

Category Methodology/ Task
Technique
Optimization = SOBO Surrogate models: Models data using surrogate models and it-
¢ GP regression eratively selects experiments based on surro-
¢ ENN gate models using acquisition functions; the
e RF obtained data are used to optimize the surro-
Acquisition functions: gate.
e EI
e PV
MOBO Surrogate models: Optimizes multiple targets, models data with
® GP regression surrogate models, and iteratively selects ex-
e ENN periments based on surrogate models using
e RF acquisition functions; the obtained data are
Acquisition function: used to optimize the surrogate.

e EHI
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Table 8. Cont.

Category Methodology/ Task
Technique
Optimization GA Fitness function: Determines the “fitness” of parameter com-
e PLSR binations and iteratively selects experiments
based on the fitness function; biology-inspired
optimization using the obtained data. It is
used as an additional agent for finding a
human-interpretable rule for experimental ob-
servations in an RL-based hybrid framework.
Supervised LLMs ChatGPT Extracts data from the literature.
Regression e DT Acts as a surrogate model or fitness function;
e RF in some frameworks, DTs, RFs, and LASSO re-
e NN gression are used independently to predict
¢ LASSO regression experimental output to assist in scientists’
¢ PLSR decision-making.
® Jump regression
® GP regression
Classification ~ ® RF classifier Exclusion of parameter combinations with po-
* Naive Bayes classifier tentially poor experimental output; GP classi-
* GP classifier fier for integrating human feedback into mod-
els.
Active Learn- Various Reducing uncertainty: Iteratively selects the most informative experi-
ing * Based on Bayesian statistics ments while reducing uncertainty and adapts
* Categorical matrix completion predictive models for experimental output us-
Margin sampling;: ing the obtained data.
* ENNs
¢ Single model with applied
MC dropout masks
Acquisition function:
¢ Combination of mean square
prediction error and
LHS
Reinforcement Single- Belief models: Selects and optimizes parameters and experi-
Learning period RL e ENNS, ments.
* GP regression
Objective function:
¢ Weighted mean-utility function or
probability sampling
Decision policy:
e EI
Multi- Belief model: Selects and optimizes parameters and experi-
period e NN ments.
RL Decision policy:

* MC search (rollout algorithm)

Optimization Techniques:

The optimization techniques used in the contributions encompass BO and GAs.

BO optimizes the given experimental parameters using an appropriate surrogate
model and selects or suggests new experiments to perform based on a policy applied
through an acquisition function. Kernel-based GP regression, ENNs, and RFs are used as
surrogate models. Both single- and multi-objective BO can be found in the contributions.
The former uses the EI and PV as an acquisition function, while the latter utilizes the
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Expected Hypervolume Improvement (EHI) to find the optimal Pareto front. Popular
BO-based algorithms include Phoenics and Gryffin [75].

Another widely employed optimization method is the GA. It is used to optimize
process parameters using a fitness function to determine which parameter combination is
most suitable and should be used for the next experiment by mimicking an evolutionary
process related to Darwin, optimizing the derivation of rules to select experiments.

Supervised Techniques:

Supervised methods are divided into regression and classification. Regarding regres-
sion, several techniques are used for different tasks within the experimental design process.
An overview of these techniques can be found in Table 8.

RF classification and naive Bayes classification are applied as classification techniques
to support the preparation of experiments by determining feasibility and filtering out
poor parameter combinations. GP classification is used for uncertainty estimation in an
AL framework. Regression techniques are predominantly applied as surrogate models
to understand the experimental data and to support the optimization of experimental
parameters.

Active Learning Techniques:

AL is used within the experimental design process to select new informative experi-
ments to perform by reducing the model’s uncertainty. Thus, it supports the training of
predictive models, which are, for instance, used to forecast the results of an experiment.
Various strategies are used, such as uncertainty-based sampling.

Reinforcement Learning Techniques:

RL is employed in Al-driven experimental design for choosing and optimizing appro-
priate experimental parameters, as well as selecting experiments accordingly. The proposed
strategies encompass single-period and multi-period horizon RL. The most notable ap-
proaches include belief models and decision policies based on MC search and EI.

The distribution of Al methodologies regarding the different categories can be found
in Figure 5, which shows that the majority of frameworks incorporate a single Al method
and that there is a predominance of optimization and AL in Al-driven experimental design.
Bayesian optimization stands out as the most applied methodology.

The reviewed literature does not include methodologies that integrate deep learning
into experimental design in terms of experimental selection and optimization. This could
be due to the simultaneous challenges of limited data availability and the complexity of the
parameter space.

Hybride

Bayesian optimization

Reinforcement Learning

Other optimization
Active Learning

Supervised Learning

Figure 5. The distribution of categories (single and hybrid) across the reviewed frameworks.
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3.3. Degree of Automation

In this section, the degree of automation of the proposed frameworks is investigated.
The contributions are categorized into three classes: supportive, partially autonomous, and
fully autonomous.

Within the scope of this work, a fully autonomous framework is defined as one that
independently plans, selects, executes, and analyzes experiments while autonomously
integrating experimental outcomes to iteratively improve its strategies. Such systems
operate without any requirement for human intervention, achieving an entirely closed-loop
experimental design process.

In contrast, partially autonomous frameworks perform multiple steps in the fully
autonomous workflow and incorporate feedback from previous experiments. However,
these frameworks do not include an automated execution and analysis stage. Partially
autonomous frameworks still depend on humans to execute experiments and make deci-
sions at critical stages, such as approving experimental suggestions or interpreting results.
In the literature, these frameworks are termed “human-in-the-loop” systems, in which
automation supports but does not fully replace human expertise.

Supportive frameworks provide assistance by proposing experimental candidates,
narrowing the search space, or optimizing specific aspects of the experimental process.
They do not autonomously adjust their strategies based on experimental outcomes and
lack an iterative feedback mechanism. The final decision-making and execution processes
remain entirely under human control. The classified contributions can be found in Table 4
and Figure 6, while the number of papers per automation category can be found in Table 9.

Table 9. The number of papers per automation category.

Automation Number
Fully autonomous 5
Partially autonomous 13
Supportive 4

The figure shows that partially autonomous frameworks are predominantly employed.
Fully autonomous and supportive frameworks are underrepresented.

Without an iterative optimization process and an autonomous experimentation plat-
form, the objective of supportive frameworks is to model existing experimental data and
predict results, making processes more efficient. Here, supervised learning techniques are
employed. Using the results of experiments to optimize the models would make these
frameworks partially autonomous.

Partially autonomous frameworks typically utilize AL or optimization techniques due
to their iterative optimization processes. By combining an autonomous experimentation
platform with a partially autonomous framework, a fully autonomous framework can
be achieved.

Fully autonomous frameworks are achieved in the context of SDLs Sadeghi et al.
[11], Schilter et al. [219], Epps et al. [220]. BO, AL, and RL/supervised learning are applied
as Al techniques. The techniques are combined with an autonomous experimentation
platform for executing and analyzing experiments. Sadeghi et al. [11] utilized a self-
developed modular platform, consisting of fluid delivery, mixing and reaction, and in situ
characterization. Schilter et al. [219] applied IBM’s RoboRXN platform and used robotic
actions by RoboRXN for executing experiments and HLPC for analyzing experimental
results. Epps et al. [220] also employed a self-developed modular platform, incorporating
an autonomous LHP QD synthesis bot. In the context of carbon nanotube growth, an aged-
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walled, supported catalyst chemical vapor deposition system was used by Waelder et al.
The system was integrated into the ARES (Automated Research System) platform.

Supportive
Fully Autonomous

Partly Autonomous

Figure 6. The distribution of the frameworks with regard to the degree of automation.

3.4. Kind of Data

In the reviewed literature, various types of data can be found, depending on the
domain and the objectives of the applied framework. Most datasets include experimental
parameters specific to the field of application, such as reaction parameters, synthesis
parameters, or other process-related variables, along with their corresponding experimental
output. For synthesis processes, these parameters include the temperature and solvent
type. In the context of microbial metabolism mapping, parameters such as growth data on
amino acids or other nutrients are utilized. Additionally, some frameworks incorporate
text data extracted from published scientific articles, which contain process parameters. In
Table 4, the types of data and the corresponding studies can be found.

3.5. Online Capability

Online-capable frameworks are important for understanding processes and exper-
iments and adapting them on the fly. In this research, online capability refers to the
incorporation of a feedback loop, in which models are updated with experimental data as
soon as the results are obtained, allowing for continuous experimentation and optimization
until a predefined stopping point is reached. In Table 4, the results obtained from the online
capability analysis are shown, while Table 10 shows the number of papers found to be
online-capable.

Table 10. The number of papers with regard to online capability.

Online Capable Number

Yes 19
No 3
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The results indicate that nearly all frameworks are online-capable, except for three
supportive frameworks. Both of these frameworks show a lack of adjustment through the
data received from selected and conducted experiments.

3.6. Generalization Ability

The aspect of generalizability plays an important role in deploying robust frame-
works across different scenarios and applications, especially in the context of autonomous
laboratories, which are ideally designed to be adaptable to diverse use cases.

In this context, “generalizability” refers to the ability of a framework to maintain its
performance and reliability when applied beyond its original training domain or initial
application area, without requiring significant modifications. A highly generalizable
framework can be transferred to new experimental applications, materials, or objectives
while still providing effective and trustworthy results. Table 4 shows the list of contributions
and their generalization capability. Table 11 shows the number of generalizable papers.

Table 11. The number of papers with regard to generalizability.

Generalizability Number
Yes 16
Limited 6

Some of the frameworks are limited to specific applications or materials due to the
incorporation of domain-specific experimentation platforms. Other frameworks are op-
timized for a specific application and need to be adapted. General frameworks require
domain-specific data and possibly expert knowledge and can be deployed across different
scenarios and applications.

3.7. Discussion

While our systematic search initially identified 234 publications, the final set included
only 22 papers (approximately 9%). This relatively small number is primarily due to the
niche nature of the research field, as our inclusion criteria were intentionally focused on
papers that directly addressed frameworks that proposed concrete solutions based on
Al-driven experimental design. Filtering for Al-based and experimental design-related
publications is necessary to ensure appropriate results. Future surveys could consider
broader search terms or inclusion criteria to capture a wider range of contributions. For
example, the term “artificial intelligence” could be replaced or extended with the terms
“deep learning”, “machine learning”, and “automated experimentation”. However, this
could also increase the number of irrelevant publications found during the experimental
derivation of the search query, especially by only considering “automated experimentation”,
“ which leads, among others, to non-Al-based experimentation frameworks. Similarly, a
replacement of the included experiment-related terms with the term “experimental design”
also led to poor results.

The observations made during the systematic review of the literature lead to the
question of what properties an ideal system or framework for Al-driven experimental
design should incorporate. Depending on the application’s objective, one has to decide
whether a system needs to operate partially or fully autonomously. Both frameworks
are capable of using Al to plan and select experiments and optimize future experiments
based on the obtained experimental results, e.g., Lai et al. [226] (partially autonomous)
and Epps et al. [220] (fully autonomous). While partially autonomous frameworks can
play a supporting role for scientists during the experimental design process to overcome
expensive trial-and-error experiments, fully autonomous frameworks perform the selected
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experiments without the need for a scientist in the loop. In contrast, supportive frameworks
are not desirable due to the missing feedback loop. Thus, such systems are not able to
learn from the new observations obtained during experiments. Compared to partially
autonomous frameworks, fully autonomous frameworks are significantly less represented
in the reviewed literature, which shows the need for further implementations in this
field. However, both partially and fully autonomous frameworks share similar desired
properties. Both need to be generalizable in order to be used for different applications. A
majority of the reviewed frameworks exhibit generalizability. This is particularly important
for fully autonomous systems, which are usually applied in the context of SDLs and,
thus, should perform different kinds of experiments without being limited to one specific
kind. An example of a limited framework was proposed by Epps et al. [220] that focused
on flow chemistry. Therefore, the experimentation stage needs to be more flexible and
adaptable. Furthermore, online capabilities are necessary to adapt experiments based
on newly collected data. All partially and fully autonomous reviewed systems meet
this criterion.

In terms of Al techniques, AL (including optimization) and RL should be applied. Both
methodologies incorporate a feedback loop and an adaptation based on newly received data.
A key limitation of existing frameworks is the sparse availability of real, domain-specific
data, which is both time-consuming and costly to obtain. Particularly in the early stage,
sufficient data are mandatory for an efficient exploration. While optimization techniques
and AL are generally efficient in handling sparse data, RL- and supervised learning-
based methodologies require large amounts of data to achieve effective learning and
generalization. Particularly, AL is capable of integrating human knowledge for dealing with
scarce data, enhancing learning efficiency and speed. Other general but potential solutions
to overcome the data bottleneck include the use of transfer learning, few-shot learning,
and data augmentation techniques [236,237]. An approach for integrating both human
knowledge and generative Al to deal with scarce data is membership query synthesis.
Here, generative Al is applied to generate synthetic data based on real experimental data
while incorporating the knowledge of human scientists in terms of AL to enhance data
quality [238].

In addition to data scarcity, the complexity of the data is often high due to the high-
dimensional parameters and search spaces. Multi-objective-based optimization frameworks
and reinforcement learning aim to handle this problem. Although MOBO is suitable for
low-data environments, it may struggle to achieve a good trade-off between multiple
objectives when data are too scarce or with insufficient computational resources. An
advantage of RL over optimization methods is the planning of multi-step strategies, while
optimization methods suggest one experiment at a time. Apart from this, Dama et al. [233]
showed that RL is also able to learn experimental design without prior knowledge, leading
to high generalizability. In conclusion, an ideal framework could integrate AL with RL,
referred to as reinforcement active learning, to address both limited data availability and
the complexity arising from high-dimensional parameter and search spaces.

A preferable improvement for the methodologies discussed, besides data augmenta-
tion, is DL as a state of the art methodology. It enhances the adaptation to newly received
data, capturing complex patterns in high-dimensional spaces, thereby increasing predictive
accuracy. However, the reviewed literature lacks a framework that incorporates DL. One
reason is the previously mentioned data scarcity. DL models typically require large, labeled
datasets to generalize effectively. Moreover, the computational cost and infrastructure
requirements for training and deploying DL models can be prohibitive in laboratory set-
tings that prioritize real-time decision-making and flexibility. Additionally, DL models are
often treated as black boxes, which raises concerns about interpretability and explainability
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when Al is expected to guide scientific decisions. In general, the explainability of Al-driven
experimental design decisions remains largely unaddressed, with only one of the reviewed
frameworks (Yoon et al. [224]) considering this aspect as a main research objective by
incorporating a combination of an RF classifier and LASSO regression. However, some
frameworks, even if not explicitly stated, deploy explainable and interpretable method-
ologies and are therefore considered explainable. Examples include purely tree-based
frameworks (Aldeghi et al. [217], Plommer et al. [221], Cruse et al. [232]) or approaches
that achieve partial explainability by integrating interpretable surrogate models, such as
GP regression (Hickman et al. [218], Schilter et al. [219], Suvarna et al. [234]) or tree-based
models (Liang et al. [231]). Future research should prioritize explainability to develop
reliable and trustworthy frameworks and ensure acceptance among scientists.

An important aspect to consider when implementing Al-driven experimental design
frameworks is their ethical dimension. In the case of fully autonomous frameworks, they
offer tremendous advantages, but several critical questions arise: Who is responsible if Al
designs and conducts harmful, unnecessary, or costly experiments? Does the use of fully
autonomous systems assist scientists by relieving them of monotonous, time-consuming
tasks, or does it risk excluding them from the creative experimentation process? Further-
more, how can the risk be mitigated that Al frameworks inherent biases from their training
data? High transparency in the Al’s decisions and the operational process is needed to
ensure the trust of scientists. In contrast, partially autonomous and supportive frameworks
can act as a helping hand, narrowing the research space and suggesting experiments while
leaving the decision-making and experimentation in human hands, thereby accelerating
the research but preserving creativity. Hazardous or impractical experimental designs can
be disregarded by researchers, and in partially autonomous frameworks, such feedback
can be used to further refine and improve Al's recommendations. If carefully designed,
both frameworks could lead to high reproducibility, reducing waste and unnecessary
experiments and thereby accelerating research.

4. Conclusions

This study investigated the role of Al in experimental design, aiming to explore
whether and how Al can accelerate scientific research. A broad literature search was con-
ducted across multiple databases, combining method-based, subject-specific, and general
sources. A carefully developed search query and appropriate filtering narrowed the initial
number of 234 results to 22 relevant contributions. This relatively small number of results
reflects the emerging nature of Al-driven experimental design, highlighting a clear need for
further research in this interdisciplinary field. A taxonomy-based analysis of the selected
studies was used to address the defined research questions.

The findings suggest that Al has significant potential to accelerate scientific research by
optimizing the design, planning, and execution of experiments. In particular, AL, including
optimization methodologies, stand out as key drivers, enabling iterative refinement of
experiments using minimal data. These methods can effectively reduce the number of
necessary trials by prioritizing the most informative experiments, thus saving time and
resources. The use of surrogate models and uncertainty estimation allows Al systems to
make informed decisions, even under data scarcity, demonstrating a practical advantage
over traditional trial-and-error methods. BO is predominantly employed and shows great
performance in handling scarce data and multiple targets (MOBO). To address scarce data
and high-dimensional parameter spaces and enable long-term planning, combining RL
with the data efficiency of AL is recommended.
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Apart from this, the majority of Al frameworks belong to chemistry or materials
science. The generalizability of several frameworks offers the opportunity to apply them in
other domains.

However, the application of DL remains limited, primarily due to data requirements.
Obtaining significant amounts of real data is often time-consuming and costly. There-
fore, future research should investigate data-efficient frameworks and AI methods for
dealing with scarce data. Where sufficient data is available, its integration could lead to
more powerful, flexible, and accurate design tools. Data augmentation, transfer learning,
and few-shot learning could help to overcome data scarcity. Furthermore, the lack of
explainability and transparency in Al decision-making remains a barrier to broader accep-
tance within the scientific community. This highlights the need for the implementation of
interpretable models.

In terms of deployment, partially autonomous frameworks are most common, bal-
ancing Al-driven decision support with human oversight. Here, Al acts as a helping
hand, without preventing human creativity. In contrast, fully autonomous systems offer
transformative potential by enabling continuous, closed-loop experimentation without
human intervention. These systems can drastically speed up the experimentation process
by suggesting experimental designs, executing them, and analyzing the results to modify
subsequent experiments. However, the implementation of fully autonomous frameworks is
still rare and needs further research. In particular, regarding their explainability to address
ethical issues.

Overall, this study demonstrates that Al-driven experimental design can make scien-
tific research more efficient, targeted, and reproducible. Researchers, especially in data-rich,
high-throughput environments or with high parameter-search space complexity, stand to
benefit most. In addition, domains with sparse data can also see improvements through
smart sampling and model-guided experimentation. This research provides a foundation
for future studies that aim to apply Al for experiment design in a certain domain. By offer-
ing a structured overview of existing frameworks, their implementation, and associated
limitations, this study seeks to support researchers in selecting and developing suitable
Al-driven approaches to accelerate their experimental processes.
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Abbreviations

The following abbreviations are used in this manuscript:

Al Artificial intelligence
AL Active learning

BO Bayesian optimization
DL Deep learning

DT Decision tree

EDNN  Ensemble deep neural network

EHI Expected hypercube improvement
EI Expected improvement

ENN Ensemble neural network

FC Filter criteria

GA Genetic algorithm

GP Gaussian process

LASSO Least absolute shrinkage and selection operator
LHS Latin hypercube sampling
LLM Large language model

MC Monte Carlo

MOBO  Multi-objective Bayesian optimization
NN Neural network

PLSR Partial least square regression

PV Predictive variance

RL Reinforcement learning

RF Random forest

SOBO  Single-objective Bayesian optimization

References

1. Piliuk, K;; Tomforde, S. Artificial intelligence in emergency medicine. A systematic literature review. Int. J. Med. Inform. 2023,
180, 105274. [CrossRef] [PubMed]

2. Hysmith, H.; Foadian, E.; Padhy, S.P,; Kalinin, S.V.; Moore, R.G.; Ovchinnikova, O.S.; Ahmadi, M. The future of self-driving
laboratories: From human in the loop interactive Al to gamification. Digit. Discov. 2024, 3, 621-636. [CrossRef]

3. Su, Y.; Wang, X.; Ye, Y.; Xie, Y.; Xu, Y,; Jiang, Y.; Wang, C. Automation and machine learning augmented by large language models
in a catalysis study. Chem. Sci. 2024, 15, 12200-12233. [CrossRef] [PubMed]

4.  Hase, F; Roch, LM.; Aspuru-Guzik, A. Next-Generation Experimentation with Self-Driving Laboratories. Trends Chem. 2019,
1, 282-291. [CrossRef]

5. Lo, S.; Baird, S.G.; Schrier, J.; Blaiszik, B.; Carson, N.; Foster, I.; Aguilar-Granda, A.; Kalinin, S.V.; Maruyama, B.; Politi, M.; et al.
Review of low-cost self-driving laboratories in chemistry and materials science: The “frugal twin” concept. Digit. Discov. 2024,
3, 842-868. [CrossRef]

6. Hickman, RJ.,; Bannigan, P.; Bao, Z.; Aspuru-Guzik, A.; Allen, C. Self-driving laboratories: A paradigm shift in nanomedicine
development. Matter 2023, 6, 1071-1081. [CrossRef]

7.  Bennett, J.A.; Abolhasani, M. Autonomous chemical science and engineering enabled by self-driving laboratories. Curr. Opin.
Chem. Eng. 2022, 36, 100831. [CrossRef]

8. Sadeghi, S.; Canty, R.B.; Mukhin, N.; Xu, J.; Delgado-Licona, E; Abolhasani, M. Engineering a Sustainable Future: Harnessing
Automation, Robotics, and Artificial Intelligence with Self-Driving Laboratories. ACS Sustain. Chem. Eng. 2024, 12, 12695-12707.

9. Tom, G.; Schmid, S.P; Baird, S.G.; Cao, Y.; Darvish, K.; Hao, H.; Lo, S.; Pablo-Garcia, S.; Rajaonson, E.M.; Skreta, M.; et al.
Self-Driving Laboratories for Chemistry and Materials Science. Chem. Rev. 2024, 124, 9633-9732.

10. Beaucage, P.A.; Sutherland, D.R.; Martin, T.B. Automation and Machine Learning for Accelerated Polymer Characterization and
Development: Past, Potential, and a Path Forward. Macromolecules 2024, 57, 8661-8670.

11.  Sadeghi, S.; Bateni, F; Kim, T.; Son, D.Y.; Bennett, ].A.; Orouji, N.; Punati, V.S,; Stark, C.; Cerra, T.D.; Awad, R; et al. Autonomous
nanomanufacturing of lead-free metal halide perovskite nanocrystals using a self-driving fluidic lab. Nanoscale 2024, 16, 580-591.

12.  Snapp, K.L.; Brown, K.A. Driving school for self-driving labs. Digit. Discov. 2023, 2, 1620-1629.


http://doi.org/10.1016/j.ijmedinf.2023.105274
http://www.ncbi.nlm.nih.gov/pubmed/37944275
http://dx.doi.org/10.1039/D4DD00040D
http://dx.doi.org/10.1039/D3SC07012C
http://www.ncbi.nlm.nih.gov/pubmed/39118602
http://dx.doi.org/10.1016/j.trechm.2019.02.007
http://dx.doi.org/10.1039/D3DD00223C
http://dx.doi.org/10.1016/j.matt.2023.02.007
http://dx.doi.org/10.1016/j.coche.2022.100831

Appl. Sci. 2025, 15, 5208 24 of 33

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Seifrid, M.; Pollice, R.; Aguilar-Granda, A.; Morgan Chan, Z.; Hotta, K.; Ser, C.T.; Vestfrid, J.; Wu, T.C.; Aspuru-Guzik, A.
Autonomous Chemical Experiments: Challenges and Perspectives on Establishing a Self-Driving Lab. Accounts Chem. Res. 2022,
55, 2454-2466.

Morgan, D.; Pilania, G.; Couet, A.; Uberuaga, B.P; Sun, C.; Li, ]. Machine learning in nuclear materials research. Curr. Opin. Solid
State Mater. Sci. 2022, 26, 100975. [CrossRef]

Kalinin, S.V.; Ziatdinov, M.; Hinkle, J.; Jesse, S.; Ghosh, A_; Kelley, K.P.; Lupini, A.R.; Sumpter, B.G.; Vasudevan, R.K. Automated
and Autonomous Experiments in Electron and Scanning Probe Microscopy. ACS Nano 2021, 15, 12604-12627.

Aal E Alj, R.S.; Meng, J.; Khan, M.E.L; Jiang, X. Machine learning advancements in organic synthesis: A focused exploration of
artificial intelligence applications in chemistry. Artif. Intell. Chem. 2024, 2, 100049. [CrossRef]

Bannigan, P.; Aldeghi, M.; Bao, Z.; Hase, F.; Aspuru-Guzik, A.; Allen, C. Machine learning directed drug formulation development.
Adv. Drug Deliv. Rev. 2021, 175, 113806. [CrossRef]

Li, X.; Xu, Z.; Bu, D.; Caj, J.; Chen, H.; Chen, Q.; Chen, T.; Cheng, F.; Chi, L.; Dong, W.; et al. Recent progress on surface chemistry
II: Property and characterization. Chin. Chem. Lett. 2025, 36, 110100. [CrossRef]

Smeaton, M.A.; Abellan, P.; Spurgeon, S.R.; Unocic, R.R.; Jungjohann, K.L. Tutorial on In Situ and Operando (Scanning)
Transmission Electron Microscopy for Analysis of Nanoscale Structure—Property Relationships. ACS Nano 2024, 18, 35091-35103.
Anker, A.S.; Aspuru-Guzik, A.; Mahmoud, C.B.; Bennett, S.; Briling, K.R.; Changiarath, A.; Chong, S.; Collins, C.M.; Cooper, A.L;
Crusius, D.; et al. Discovering structure-property correlations: General discussion. Faraday Discuss. 2024, 256, 373-412.

Batool, M.; Sanumi, O.; Jankovic, J. Application of artificial intelligence in the materials science, with a special focus on fuel cells
and electrolyzers. Energy Al 2024, 18, 100424. [CrossRef]

Wang, L.; Ma, C.; Feng, X.; Zhang, Z.; Yang, H.; Zhang, J.; Chen, Z.; Tang, ].; Chen, X; Lin, Y; et al. A survey on large language
model based autonomous agents. Front. Comput. Sci. 2024, 18, 186345. [CrossRef]

Madanchian, M.; Taherdoost, H. Al-Powered Innovations in High-Tech Research and Development: From Theory to Practice.
Comput. Mater. Contin. 2024, 81, 2133-2159. [CrossRef]

Abstracts. Fuel Energy Abstr. 2024, 65, 506—-608. [CrossRef]

Nian, M,; Braun, G.; Escher, B.I; Fang, M. Toxicological Study of Human Exposure to Mixtures of Chemicals: Challenges and
Approaches. Environ. Sci. Technol. Lett. 2024, 11, 773-782.

Groo, L.; Juhl, A.T,; Baldwin, L.A. Toward soft robotic inspection for aircraft: An overview and perspective. MRS Commun. 2024,
14,741-751. [CrossRef]

Achenbach, P; Adhikari, D.; Afanasev, A.; Afzal, F; Aidala, C.; Al-bataineh, A.; Almaalol, D.; Amaryan, M.; Androi¢, D;
Armstrong, W.; et al. The present and future of QCD. Nucl. Phys. A 2024, 1047, 122874. [CrossRef]

Wu, Y,; Walsh, A.; Ganose, A.M. Race to the bottom: Bayesian optimisation for chemical problems. Digit. Discov. 2024,
3, 1086-1100.

Li, Q.; Xing, R.; Li, L.; Yao, H.; Wu, L.; Zhao, L. Synchrotron radiation data-driven artificial intelligence approaches in materials
discovery. Artif. Intell. Chem. 2024, 2, 100045. [CrossRef]

Xie, J.; Zhou, Y,; Faizan, M.; Li, Z.; Li, T.; Fu, Y.; Wang, X.; Zhang, L. Designing semiconductor materials and devices in the
post-Moore era by tackling computational challenges with data-driven strategies. Nat. Comput. Sci. 2024, 4, 322-333. [CrossRef]
Orouji, N.; Bennett, J.A.; Sadeghi, S.; Abolhasani, M. Digital Pareto-front mapping of homogeneous catalytic reactions. React.
Chem. Eng. 2024, 9, 787-794.

Bar6, E.L.; Nadal Rodriguez, P,; Judrez-Jiménez, J.; Ghashghaei, O.; Lavilla, R. Reaction Space Charting as a Tool in Organic
Chemistry Research and Development. Adv. Synth. Catal. 2024, 366, 551-573. [CrossRef]

Volk, A.A.; Abolhasani, M. Performance metrics to unleash the power of self-driving labs in chemistry and materials science. Nat.
Commun. 2024, 15, 1378. [CrossRef] [PubMed]

Voogdt, C.G.P; Tripathi, S.; Bassler, 5.0.; McKeithen-Mead, S.A.; Guiberson, E.R.; Koumoutsi, A.; Bravo, A.M.; Buie, C,;
Zimmermann, M.; Sonnenburg, J.L.; et al. Randomly barcoded transposon mutant libraries for gut commensals II: Applying
libraries for functional genetics. Cell Rep. 2024, 43, 113519. [CrossRef]

Williams, B.M.; Hanson, B.R.; Pandya, R. Chapter 15—Geoscience-society interface: How to improve dialog and build actions
for the benefit of human communities. In Geoethics for the Future; Peppoloni, S., Capua, G.D., Eds.; Elsevier: Amsterdam, The
Netherlands, 2024; pp. 191-206. [CrossRef]

Von Stosch, M. Digital Process Development and Manufacturing of Biopharmaceuticals: Is It a Revolution? In Innovation in Life
Sciences; Management for Professionals; Schonbohm, A., Von Horsten, H.H., Plugmann, P., Von Stosch, M., Eds.; Springer Nature
Switzerland: Cham, Switzerland, 2024; pp. 61-75.

Volkamer, A ; Riniker, S.; Nittinger, E.; Lanini, J.; Grisoni, F.; Evertsson, E.; Rodriguez-Pérez, R.; Schneider, N. Machine learning
for small molecule drug discovery in academia and industry. Artif. Intell. Life Sci. 2023, 3, 100056. [CrossRef]

Zhao, Y.; Zhu, Z.; Chen, B.; Qiu, S.; Huang, J.; Lu, X,; Yang, W.; Ai, C.; Huang, K.; He, C.; et al. Toward parallel intelligence: An
interdisciplinary solution for complex systems. Innovation 2023, 4, 100521. [CrossRef]


http://dx.doi.org/10.1016/j.cossms.2021.100975
http://dx.doi.org/10.1016/j.aichem.2024.100049
http://dx.doi.org/10.1016/j.addr.2021.05.016
http://dx.doi.org/10.1016/j.cclet.2024.110100
http://dx.doi.org/10.1016/j.egyai.2024.100424
http://dx.doi.org/10.1007/s11704-024-40231-1
http://dx.doi.org/10.32604/cmc.2024.057094
http://dx.doi.org/10.1016/j.fueleneab.2024.08.002
http://dx.doi.org/10.1557/s43579-024-00586-9
http://dx.doi.org/10.1016/j.nuclphysa.2024.122874
http://dx.doi.org/10.1016/j.aichem.2024.100045
http://dx.doi.org/10.1038/s43588-024-00632-5
http://dx.doi.org/10.1002/adsc.202301205
http://dx.doi.org/10.1038/s41467-024-45569-5
http://www.ncbi.nlm.nih.gov/pubmed/38355564
http://dx.doi.org/10.1016/j.celrep.2023.113519
http://dx.doi.org/10.1016/B978-0-443-15654-0.00022-0
http://dx.doi.org/10.1016/j.ailsci.2022.100056
http://dx.doi.org/10.1016/j.xinn.2023.100521

Appl. Sci. 2025, 15, 5208 25 of 33

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.
65.

Schrier, J.; Norquist, A.].; Buonassisi, T.; Brgoch, J. In Pursuit of the Exceptional: Research Directions for Machine Learning in
Chemical and Materials Science. . Am. Chem. Soc. 2023, 145, 21699-21716.

Bustillo, L.; Laino, T.; Rodrigues, T. The rise of automated curiosity-driven discoveries in chemistry. Chem. Sci. 2023, 14,
10378-10384.

Xu, Y; Ge, J.; Ju, CW. Machine learning in energy chemistry: Introduction, challenges and perspectives. Energy Adv. 2023,
2, 896-921.

Burkert, V.; Elouadrhiri, L.; Afanasev, A.; Arrington, J.; Contalbrigo, M.; Cosyn, W.; Deshpande, A.; Glazier, D.; Ji, X,; Liuti, S.;
et al. Precision studies of QCD in the low energy domain of the EIC. Prog. Part. Nucl. Phys. 2023, 131, 104032. [CrossRef]
Pelkie, B.G.; Pozzo, L.D. The laboratory of Babel: Highlighting community needs for integrated materials data management.
Digit. Discov. 2023, 2, 544-556.

Wang, X.Q.; Chen, P.; Chow, C.L.; Lau, D. Artificial-intelligence-led revolution of construction materials: From molecules to
Industry 4.0. Matter 2023, 6, 1831-1859. [CrossRef]

Automate and digitize. Nat. Synth. 2023, 2, 459. [CrossRef]

Vriza, A.; Chan, H.; Xu, J. Self-Driving Laboratory for Polymer Electronics. Chem. Mater. 2023, 35, 3046-3056.

Cavasotto, C.N.; Di Filippo, J.I. The Impact of Supervised Learning Methods in Ultralarge High-Throughput Docking. J. Chem.
Inf. Model. 2023, 63, 2267-2280.

Kaur, D.P; Singh, N.P.; Banerjee, B. A review of platforms for simulating embodied agents in 3D virtual environments. Artif.
Intell. Rev. 2023, 56, 3711-3753. [CrossRef]

Espino, M.T.; Tuazon, B.J.; Espera, A.H.; Nocheseda, C.J.C.; Manalang, R.S.; Dizon, ].R.C.; Advincula, R.C. Statistical methods for
design and testing of 3D-printed polymers. MRS Commun. 2023, 13, 193-211. [CrossRef]

Pacheco Gutierrez, D.; Folkmann, L.M.; Tribukait, H.; Roch, L.M. How to Accelerate R&D and Optimize Experiment Planning
with Machine Learning and Data Science. Chimia 2023, 77, 7-16. [CrossRef]

Leins, D.A.; Haase, S.B.; Eslami, M.; Schrier, J.; Freeman, J.T. Collaborative methods to enhance reproducibility and accelerate
discovery. Digit. Discov. 2023, 2, 12-27.

Peng, X.; Wang, X. Next-generation intelligent laboratories for materials design and manufacturing. MRS Bull. 2023, 48, 179-185.
[CrossRef]

Abolhasani, M.; Kumacheva, E. The rise of self-driving labs in chemical and materials sciences. Nat. Synth. 2023, 2, 483-492.
[CrossRef]

Kardynska, M.; Kogut, D.; Pacholczyk, M.; Smieja, ]. Mathematical modeling of regulatory networks of intracellular processes—
Aims and selected methods. Comput. Struct. Biotechnol. J. 2023, 21, 1523-1532. [CrossRef] [PubMed]

Kabir, R.; Sivasubramanian, M.; Hitch, G.; Hakkim, S.; Kainesie, J.; Vinnakota, D.; Mahmud, I.; Hoque Apu, E.; Syed, H.Z,;
Parsa, A.D. Chapter 17—"Deep learning” for healthcare: Opportunities, threats, and challenges. In Deep Learning in Personalized
Healthcare and Decision Support; Garg, H., Chatterjee, ]. M., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 225-244.
[CrossRef]

Gongora, A.E.; Saygin, V.; Snapp, K.L.; Brown, K.A. Chapter 12—Autonomous experimentation in nanotechnology. In Infelligent
Nanotechnology; Zheng, Y., Wu, Z., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 331-360. [CrossRef]

Lin, D.Z.; Fang, G.; Liao, K. Synthesize in a Smart Way: A Brief Introduction to Intelligence and Automation in Organic Synthesis.
In Machine Learning in Molecular Sciences; Challenges and Advances in Computational Chemistry and Physics; Qu, C., Liu, H.,,
Eds.; Springer International Publishing: Cham, Switzerland, 2023; Volume 36, pp. 227-275.

Botifoll, M.; Pinto-Huguet, I.; Arbiol, ]. Machine learning in electron microscopy for advanced nanocharacterization: Current
developments, available tools and future outlook. Nanoscale Horizons 2022, 7, 1427-1477.

Arrington, J.; Battaglieri, M.; Boehnlein, A.; Bogacz, S.; Brooks, W.; Chudakov, E.; Cloét, I.; Ent, R.; Gao, H.; Grames, ].; et al.
Physics with CEBAF at 12 GeV and future opportunities. Prog. Part. Nucl. Phys. 2022, 127,103985. [CrossRef]

Abdul Khalek, R.; Accardi, A.; Adam, J.; Adamiak, D.; Akers, W.; Albaladejo, M.; Al-bataineh, A.; Alexeev, M.; Ameli, F;
Antonioli, P; et al. Science Requirements and Detector Concepts for the Electron-Ion Collider: EIC Yellow Report. Nucl. Phys. A
2022, 1026, 122447. [CrossRef]

Munyebvu, N.; Lane, E.; Grisan, E.; Howes, PD. Accelerating colloidal quantum dot innovation with algorithms and automation.
Mater. Adv. 2022, 3, 6950-6967. [CrossRef]

Barends, T.R.M.; Stauch, B.; Cherezov, V.; Schlichting, I. Serial femtosecond crystallography. Nat. Rev. Methods Prim. 2022, 2, 59.
[CrossRef]

Jia, S.; Yang, P,; Gao, Z.; Li, Z.; Fang, C.; Gong, ]. Recent progress in antisolvent crystallization. CrystEngComm 2022, 24, 3122-3135.
Serov, N.; Vinogradov, V. Artificial intelligence to bring nanomedicine to life. Adv. Drug Deliv. Rev. 2022, 184, 114194. [CrossRef]
Mayr, E.; Harth, M.; Kouroudis, I.; Rinderle, M.; Gagliardi, A. Machine Learning and Optoelectronic Materials Discovery: A
Growing Synergy. J. Phys. Chem. Lett. 2022, 13, 1940-1951.


http://dx.doi.org/10.1016/j.ppnp.2023.104032
http://dx.doi.org/10.1016/j.matt.2023.04.016
http://dx.doi.org/10.1038/s44160-023-00354-y
http://dx.doi.org/10.1007/s10462-022-10253-x
http://dx.doi.org/10.1557/s43579-023-00332-7
http://dx.doi.org/10.2533/chimia.2023.7
http://dx.doi.org/10.1557/s43577-023-00481-z
http://dx.doi.org/10.1038/s44160-022-00231-0
http://dx.doi.org/10.1016/j.csbj.2023.02.006
http://www.ncbi.nlm.nih.gov/pubmed/36851915
http://dx.doi.org/10.1016/B978-0-443-19413-9.00017-5
http://dx.doi.org/10.1016/B978-0-323-85796-3.00012-3
http://dx.doi.org/10.1016/j.ppnp.2022.103985
http://dx.doi.org/10.1016/j.nuclphysa.2022.122447
http://dx.doi.org/10.1039/D2MA00468B
http://dx.doi.org/10.1038/s43586-022-00141-7
http://dx.doi.org/10.1016/j.addr.2022.114194

Appl. Sci. 2025, 15, 5208 26 of 33

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.
77.

78.

79.
80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

Schmitz, C.; Cremanns, K.; Bissadi, G. Chapter 5—Application of machine learning algorithms for use in material chemistry. In
Computational and Data-Driven Chemistry Using Artificial Intelligence; Akitsu, T., Ed.; Elsevier: Amsterdam, The Netherlands, 2022;
pp. 161-192. [CrossRef]

Oettmeier, C.; Fessel, A.; Dobereiner, H.G. Chapter 12—Integrated biology of Physarum polycephalum: Cell biology, biophysics,
and behavior of plasmodial networks. In Myxomycetes, 2nd ed.; Rojas, C., Stephenson, S.L., Eds.; Academic Press: Cambridge,
MA, USA, 2022; pp. 453—492. [CrossRef]

Liu, Z.; Zheng, Y. Start of the “Age of Exploration” of AI Governance. In Al Ethics and Governance; Springer Nature Singapore:
Singapore, 2022; pp. 111-125. [CrossRef]

Li, B.; Zhong, Y.; Zhang, T.; Hua, N. Transcending the COVID-19 crisis: Business resilience and innovation of the restaurant
industry in China. J. Hosp. Tour. Manag. 2021, 49, 44-53. [CrossRef]

Epps, RW.; Volk, A.A_; Ibrahim, M.Y.; Abolhasani, M. Universal self-driving laboratory for accelerated discovery of materials
and molecules. Chem 2021, 7, 2541-2545. [CrossRef]

Stach, E.; DeCost, B.; Kusne, A.G.; Hattrick-Simpers, J.; Brown, K.A.; Reyes, K.G.; Schrier, ].; Billinge, S.; Buonassisi, T.; Foster, L;
et al. Autonomous experimentation systems for materials development: A community perspective. Matter 2021, 4, 2702-2726.
[CrossRef]

Lin, A.; Uva, A ; Babi, J.; Tran, H. Materials design for resilience in the biointegration of electronics. MRS Bull. 2021, 46, 860-869.
[CrossRef]

Tao, H.; Wu, T.; Aldeghi, M.; Wu, T.C.; Aspuru-Guzik, A.; Kumacheva, E. Nanoparticle synthesis assisted by machine learning.
Nat. Rev. Mater. 2021, 6, 701-716. [CrossRef]

Rodriguez-Martinez, X.; Pascual-San-José, E.; Campoy-Quiles, M. Accelerating organic solar cell material’s discovery: High-
throughput screening and big data. Energy Environ. Sci. 2021, 14, 3301-3322.

Pollice, R.; dos Passos Gomes, G.; Aldeghi, M.; Hickman, R.J.; Krenn, M.; Lavigne, C.; Lindner-D’Addario, M.; Nigam, A_; Ser,
C.T.; Yao, Z.; et al. Data-Driven Strategies for Accelerated Materials Design. Accounts Chem. Res. 2021, 54, 849-860. [CrossRef]
Bittner, ML.I. Rethinking data and metadata in the age of machine intelligence. Patterns 2021, 2, 100208. [CrossRef]

Shi, Y.; Prieto, PL.; Zepel, T.; Grunert, S.; Hein, J.E. Automated Experimentation Powers Data Science in Chemistry. Accounts
Chem. Res. 2021, 54, 546-555.

Zhuo, Y.; Brgoch, J. Opportunities for Next-Generation Luminescent Materials through Artificial Intelligence. J. Phys. Chem. Lett.
2021, 12, 764-772.

Hayashi, Y. Time Economy in Total Synthesis. J. Org. Chem. 2021, 86, 1-23.

Bergemann, D.; Ottaviani, M. Chapter 8—Information markets and nonmarkets. In Handbook of Industrial Organization; Ho, K.,
Hortagsu, A., Lizzeri, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; Volume 4, pp. 593-672. [CrossRef]

Idrobo-Avila, E.; Loaiza-Correa, H.; Mufioz-Bolafios, F.; van Noorden, L.; Vargas-Cafias, R. A Proposal for a Data-Driven
Approach to the Influence of Music on Heart Dynamics. Front. Cardiovasc. Med. 2021, 8, 699145. [CrossRef] [PubMed]

Hosszu, A.; Kaucsar, T.; Seeliger, E.; Fekete, A. Animal Models of Renal Pathophysiology and Disease. In Preclinical MRI of the
Kidney; Methods in Molecular Biology; Pohlmann, A., Niendorf, T., Eds.; Springer: New York, NY, USA, 2021; Volume 2216,
pp. 27-44.

Han, S.; Kashfipour, M.A.; Ramezani, M.; Abolhasani, M. Accelerating gas-liquid chemical reactions in flow. Chem. Commun.
2020, 56, 10593-10606.

Zhong, J.; Riordon, J.; Wu, T.C.; Edwards, H.; Wheeler, A.R.; Pardee, K.; Aspuru-Guzik, A.; Sinton, D. When robotics met fluidics.
Lab Chip 2020, 20, 709-716.

Siedler, M.; Eichling, S.; Huelsmeyer, M.; Angstenberger, ]. Chapter 13: Formulation Development for Biologics Utilizing Lab
Automation and In Vivo Performance Models. In Development of Biopharmaceutical Drug-Device Products; AAPS Advances in the
Pharmaceutical Sciences Series; Jameel, F,, Skoug, ].W., Nesbitt, R.R., Eds.; Springer International Publishing: Cham, Switzerland,
2020; Volume 35, pp. 299-341.

Cuadrado-Gallego, ].J.; Demchenko, Y. Data Science Body of Knowledge. In The Data Science Framework; Cuadrado-Gallego, ].J.,
Demchenko, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 43-73. [CrossRef]

Stein, H.S.; Gregoire, ]. M. Progress and prospects for accelerating materials science with automated and autonomous workflows.
Chem. Sci. 2019, 10, 9640-9649. [CrossRef]

De Almeida, A.F,; Moreira, R.; Rodrigues, T. Synthetic organic chemistry driven by artificial intelligence. Nat. Rev. Chem. 2019,
3, 589-604. [CrossRef]

Riordon, J.; Sovilj, D.; Sanner, S.; Sinton, D.; Young, E.W. Deep Learning with Microfluidics for Biotechnology. Trends Biotechnol.
2019, 37, 310-324. [CrossRef]

Melo, S.M.; Carver, J.C.; Souza, P.S.; Souza, S.R. Empirical research on concurrent software testing: A systematic mapping study.
Inf. Softw. Technol. 2019, 105, 226-251. [CrossRef]


http://dx.doi.org/10.1016/B978-0-12-822249-2.00001-3
http://dx.doi.org/10.1016/B978-0-12-824281-0.00004-X
http://dx.doi.org/10.1007/978-981-19-2531-3_8
http://dx.doi.org/10.1016/j.jhtm.2021.08.024
http://dx.doi.org/10.1016/j.chempr.2021.09.004
http://dx.doi.org/10.1016/j.matt.2021.06.036
http://dx.doi.org/10.1557/s43577-021-00174-5
http://dx.doi.org/10.1038/s41578-021-00337-5
http://dx.doi.org/10.1021/acs.accounts.0c00785
http://dx.doi.org/10.1016/j.patter.2021.100208
http://dx.doi.org/10.1016/bs.hesind.2021.11.008
http://dx.doi.org/10.3389/fcvm.2021.699145
http://www.ncbi.nlm.nih.gov/pubmed/34490368
http://dx.doi.org/10.1007/978-3-030-51023-7_3
http://dx.doi.org/10.1039/C9SC03766G
http://dx.doi.org/10.1038/s41570-019-0124-0
http://dx.doi.org/10.1016/j.tibtech.2018.08.005
http://dx.doi.org/10.1016/j.infsof.2018.08.017

Appl. Sci. 2025, 15, 5208 27 of 33

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.
101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

Chandra, C.; Grabis, ]. Methodology for Supply Chain Configuration. In Supply Chain Configuration; Springer: New York, NY,
USA, 2016; pp. 87-107. [CrossRef]

Park, Y.; Kellis, M. Deep learning for regulatory genomics. Nat. Biotechnol. 2015, 33, 825-826. [CrossRef]

Bouquet, F,; Chipeaux, S.; Lang, C.; Marilleau, N.; Nicod, ].M.; Taillandier, P. 1—Introduction to the Agent Approach. In
Agent-based Spatial Simulation with Netlogo; Banos, A., Lang, C., Marilleau, N., Eds.; Elsevier: Oxford, UK, 2015; pp. 1-28.
[CrossRef]

Holzinger, A.; Dehmer, M.; Jurisica, I. Knowledge Discovery and interactive Data Mining in Bioinformatics—State-of-the-Art,
future challenges and research directions. BMC Bioinform. 2014, 15, I1. [CrossRef]

Klie, S.; Mutwil, M.; Persson, S.; Nikoloski, Z. Inferring gene functions through dissection of relevance networks: Interleaving the
intra- and inter-species views. Mol. Biosyst. 2012, 8, 2233-2241.

Griffiths, G. Steps towards autonomy: From current measurements to underwater vehicles. Methods Oceanogr. 2012, 1-2, 22-48.
[CrossRef]

Potyrailo, R.; Rajan, K.; Stoewe, K.; Takeuchi, I.; Chisholm, B.; Lam, H. Combinatorial and High-Throughput Screening of
Materials Libraries: Review of State of the Art. ACS Comb. Sci. 2011, 13, 579-633.

Kleiner, R.E.; Dumelin, C.E.; Liu, D.R. Small-molecule discovery from DNA-encoded chemical libraries. Chem. Soc. Rev. 2011,
40, 5707-5717.

Sparkes, A.; Aubrey, W.; Byrne, E.; Clare, A.; Khan, M.N.; Liakata, M.; Markham, M.; Rowland, J.; Soldatova, L.N.; Whelan, K.E.;
et al. Towards Robot Scientists for autonomous scientific discovery. Autom. Exp. 2010, 2, 1. [CrossRef]

Abstracts from Fuel and Energy Research Publications. Fuel Energy Abstr. 2008, 49, 382—-462. [CrossRef]

Perales, J.C.; Shanks, D.R. Models of covariation-based causal judgment: A review and synthesis. Psychon. Bull. Rev. 2007,
14, 577-596. [CrossRef]

Complex Systems and the Evolution of Economies. In Thinking in Complexity; Springer: Berlin/Heidelberg, Germany, 2007;
pp. 311-365. [CrossRef]

Goldfarb, D. High field ENDOR as a characterization tool for functional sites in microporous materials. Phys. Chem. Chem. Phys.
2006, 8, 2325-2343.

Loépez-Garcia, I.; Campillo, N.; Arnau-Jerez, I.; Hernandez-Cérdoba, M. ETAAS determination of gallium in soils using slurry
sampling. |. Anal. At. Spectrom. 2004, 19, 935-937.

Mainzer, K. Complex Systems and the Evolution of Human Society. In Thinking in Complexity; Springer: Berlin/Heidelberg,
Germany, 2004; pp. 313-385. [CrossRef]

Stewart, L.; Clark, R.; Behnke, C. High-throughput crystallization and structure determination in drug discovery. Drug Discov.
Today 2002, 7, 187-196. [CrossRef]

Fei, Y,; Rendy, B.; Kumar, R; Dartsi, O.; Sahasrabuddhe, H.P.; McDermott, M.].; Wang, Z.; Szymanski, N.J.; Walters, L.N.; Milsted,
D.; et al. AlabOS: A Python-based reconfigurable workflow management framework for autonomous laboratories. Digit. Discov.
2024, 3, 2275-2288. [CrossRef]

Pham, L.M.; Le, D.T. High-performance simulation of disease outbreaks in growing-finishing pig herds raised by the precision
feeding method. Comput. Electron. Agric. 2024, 225, 109335. [CrossRef]

Chen, T.; She, C.; Wang, L.; Duan, S. Memristive leaky integrate-and-fire neuron and learnable straight-through estimator in
spiking neural networks. Cogn. Neurodynamics 2024, 18, 3075-3091. [CrossRef] [PubMed]

Sim, M.; Vakili, M.G.; Strieth-Kalthoff, F.; Hao, H.; Hickman, R.J.; Miret, S.; Pablo-Garcia, S.; Aspuru-Guzik, A. ChemOS 2.0: An
orchestration architecture for chemical self-driving laboratories. Matter 2024, 7, 2959-2977. [CrossRef]

Seifrid, M.; Strieth-Kalthoff, F.; Haddadnia, M.; Wu, T.C.; Alca, E.; Bodo, L.; Arellano-Rubach, S.; Yoshikawa, N.; Skreta, M.;
Keunen, R.; et al. Chemspyd: An open-source python interface for Chemspeed robotic chemistry and materials platforms. Digit.
Discov. 2024, 3, 1319-1326. [CrossRef]

Liu, H,; Li, Y.; Xin, H.; Wang, F; Du, Y.; Wu, J. The Innovation and Practice of a Remote Physical Experiment Method. In
Proceedings of the 2024 International Symposium on Artificial Intelligence for Education, New York, NY, USA, 6-8 September
2024; ISAIE "24; pp. 583-588. [CrossRef]

He, L.,; Song, L.; Li, X,; Lin, S.; Ye, G.; Liu, H.; Zhao, X. Study of andrographolide bioactivity against Pseudomonas aeruginosa
based on computational methodology and biochemical analysis. Front. Chem. 2024, 12, 1388545. [CrossRef]

Engelmann, C.; Somnath, S. Science Use Case Design Patterns for Autonomous Experiments. In Proceedings of the 28th European
Conference on Pattern Languages of Programs, Irsee, Germany, 5-9 July 2024; EuroPLoP "23.

Kovtun, V.; Grochla, K.; Kharchenko, V.; Haq, M.A.; Semenov, A. Stochastic forecasting of variable small data as a basis for
analyzing an early stage of a cyber epidemic. Sci. Rep. 2023, 13, 22810. [CrossRef]

Guevarra, D.; Kan, K.; Lai, Y.; Jones, RJ.R.; Zhou, L.; Donnelly, P.; Richter, M.; Stein, H.S.; Gregoire, ]. M. Orchestrating nimble
experiments across interconnected labs. Digit. Discov. 2023, 2, 1806-1812. [CrossRef]


http://dx.doi.org/10.1007/978-1-4939-3557-4_5
http://dx.doi.org/10.1038/nbt.3313
http://dx.doi.org/10.1016/B978-1-78548-055-3.50001-0
http://dx.doi.org/10.1186/1471-2105-15-S6-I1
http://dx.doi.org/10.1016/j.mio.2012.05.001
http://dx.doi.org/10.1186/1759-4499-2-1
http://dx.doi.org/10.1016/j.fueleneab.2008.10.001
http://dx.doi.org/10.3758/BF03196807
http://dx.doi.org/10.1007/978-3-540-72228-1_7
http://dx.doi.org/10.1007/978-3-662-05364-5_7
http://dx.doi.org/10.1016/S1359-6446(01)02121-3
http://dx.doi.org/10.1039/D4DD00129J
http://dx.doi.org/10.1016/j.compag.2024.109335
http://dx.doi.org/10.1007/s11571-024-10133-w
http://www.ncbi.nlm.nih.gov/pubmed/39555273
http://dx.doi.org/10.1016/j.matt.2024.04.022
http://dx.doi.org/10.1039/D4DD00046C
http://dx.doi.org/10.1145/3700297.3700398
http://dx.doi.org/10.3389/fchem.2024.1388545
http://dx.doi.org/10.1038/s41598-023-49007-2
http://dx.doi.org/10.1039/D3DD00166K

Appl.

Sci. 2025, 15, 5208 28 of 33

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

Misko, V.R.; Baraban, L.; Makarov, D.; Huang, T.; Gelin, P.; Mateizel, I.; Wouters, K.; Munck, N.D.; Nori, F; Malsche, W.D.
Selecting active matter according to motility in an acoustofluidic setup: Self-propelled particles and sperm cells. Soft Matter 2023,
19, 8635-8648.

Brian, K.; Stella, M. Introducing mindset streams to investigate stances towards STEM in high school students and experts. Phys.
A Stat. Mech. Its Appl. 2023, 626, 129074. [CrossRef]

Coleman, A ; Eser, J.; Mayotte, E.; Sarazin, F.; Schroder, E; Soldin, D.; Venters, T.; Aloisio, R.; Alvarez-Muiiiz, J.; Alves Batista, R.;
et al. Ultra high energy cosmic rays The intersection of the Cosmic and Energy Frontiers. Astropart. Phys. 2023, 149, 102819.
[CrossRef]

Junior, W.; Azzolini, F.; Mundim, L.; Porto, A.; Amani, H. Shipyard facility layout optimization through the implementation of a
sequential structure of algorithms. Heliyon 2023, 9, e16714. [CrossRef] [PubMed]

Szlachetko, J.; Szade, J.; Beyer, E.; Blachucki, W.; Ciochoni, P.; Dumas, P.,; Freindl, K.; Gazdowicz, G.; Glatt, S.; Gula, K; et al.
SOLARIS National Synchrotron Radiation Centre in Krakow, Poland. Eur. Phys. J. Plus 2023, 138, 10. [CrossRef]

Varotsos, C.A.; Krapivin, V.E; Mkrtchyan, EA.; Xue, Y. Global Problems of Ecodynamics and Hydrogeochemistry. In Constructive
Processing of Microwave and Optical Data for Hydrogeochemical Applications; Springer International Publishing: Cham, Switzerland,
2023; pp. 1-118. [CrossRef]

Furtado, V.R,; Vignando, H.; Luz, C.D.; Steinmacher, L.E; Kalinowski, M.; Oliveira]r, E. Controlled Experimentation of Software
Product Lines. In UML-Based Software Product Line Engineering with SMarty; Oliveira]r, E., Ed.; Springer International Publishing:
Cham, Switzerland, 2023; pp. 417—443. [CrossRef]

Zhao, Y.; Boley, M.; Pelentritou, A.; Karoly, PJ.; Freestone, D.R.; Liu, Y.; Muthukumaraswamy, S.; Woods, W.; Liley, D;
Kuhlmann, L. Space-time resolved inference-based neurophysiological process imaging: Application to resting-state alpha
rhythm. Neurolmage 2022, 263, 119592. [CrossRef]

Wang, Y.; Laforge, F.; Goun, A.; Rabitz, H. Selective photo-excitation of molecules enabled by stimulated Raman pre-excitation.
Phys. Chem. Chem. Phys. 2022, 24, 10062-10068.

Lucas-Rhimbassen, M. The COST of Joining Legal Forces on a Celestial Body of Law and Beyond: Anticipating Future Clashes
between Corpus Juris Spatialis, Lex Mercatoria, Antitrust and Ethics. Space Policy 2022, 59, 101445. [CrossRef]

Nau, J.; Henke, K.; Streitferdt, D. New Ways for Distributed Remote Web Experiments. In Learning with Technologies and
Technologies in Learning; Lecture Notes in Networks and Systems; Auer, M.E., Pester, A., May, D., Eds.; Springer International
Publishing: Cham, Switzerland, 2022; Volume 456, pp. 257-284.

Engelmann, C.; Kuchar, O.; Boehm, S.; Brim, M.].; Naughton, T.; Somnath, S.; Atchley, S.; Lange, J.; Mintz, B.; Arenholz, E. The
INTERSECT Open Federated Architecture for the Laboratory of the Future. In Accelerating Science and Engineering Discoveries
Through Integrated Research Infrastructure for Experiment, Big Data, Modeling and Simulation; Communications in Computer and
Information Science; Doug, K., Al, G., Pophale, S., Liu, H., Parete-Koon, S., Eds.; Springer Nature Switzerland: Cham, Switzerland,
2022; Volume 1690, pp. 173-190. [CrossRef]

Tran, N.N.; Gelonch, M.E.; Liang, S.; Xiao, Z.; Sarafraz, M.M.; Tisma, M.; Federsel, H.J.; Ley, S.V.; Hessel, V. Enzymatic
pretreatment of recycled grease trap waste in batch and continuous-flow reactors for biodiesel production. Chem. Eng. J. 2021,
426,131703. [CrossRef]

Pasquinelli, M.; Joler, V. The Nooscope manifested: Al as instrument of knowledge extractivism. Al Soc. 2021, 36, 1263-1280.
[CrossRef]

Gupta, N.; Kini, P.; Gupta, S.; Darbari, H.; Joshi, N.; Khosravy, M. Six Sigma based modeling of the hydraulic oil heating under
low load operation. Eng. Sci. Technol. Int. J. 2021, 24, 11-21. [CrossRef]

Demchenko, Y.; Maijer, M.; Comminiello, L. Data Scientist Professional Revisited: Competences Definition and Assessment,
Curriculum and Education Path Design. In Proceedings of the 2021 4th International Conference on Big Data and Education,
ICBDE "21, London, UK, 3-5 February 2021; pp. 52-62.

Wang, R.; Luo, Y,; Jia, H,; Ferrell, ].R.; Ben, H. Development of quantitative 13C NMR characterization and simulation of C, H,
and O content for pyrolysis oils based on 13C NMR analysis. RSC Adv. 2020, 10, 25918-25928.

Brings, ].; Daun, M.; Weyer, T.; Pohl, K. Analyzing goal variability in cyber-physical system networks. SIGAPP Appl. Comput. Rev.
2020, 20, 19-35. [CrossRef]

Fageh, R.; Fetzer, C.; Hermanns, H.; Hoffmann, J.; Klauck, M.; Kéhl, M.A.; Steinmetz, M.; Weidenbach, C. Towards Dynamic
Dependable Systems Through Evidence-Based Continuous Certification. In Leveraging Applications of Formal Methods, Verification
and Validation: Engineering Principles; Lecture Notes in Computer Science; Margaria, T., Steffen, B., Eds.; Springer International
Publishing: Cham, Switzerland, 2020; Volume 12477, pp. 416—439. [CrossRef]

Daviran, M.; Longwill, S.M.; Casella, J.F.; Schultz, K.M. Rheological characterization of dynamic remodeling of the pericellular
region by human mesenchymal stem cell-secreted enzymes in well-defined synthetic hydrogel scaffolds. Soft Matter 2018,
14, 3078-3089.


http://dx.doi.org/10.1016/j.physa.2023.129074
http://dx.doi.org/10.1016/j.astropartphys.2023.102819
http://dx.doi.org/10.1016/j.heliyon.2023.e16714
http://www.ncbi.nlm.nih.gov/pubmed/37389080
http://dx.doi.org/10.1140/epjp/s13360-022-03592-9
http://dx.doi.org/10.1007/978-3-031-28877-7_1
http://dx.doi.org/10.1007/978-3-031-18556-4_19
http://dx.doi.org/10.1016/j.neuroimage.2022.119592
http://dx.doi.org/10.1016/j.spacepol.2021.101445
http://dx.doi.org/10.1007/978-3-031-23606-8_11
http://dx.doi.org/10.1016/j.cej.2021.131703
http://dx.doi.org/10.1007/s00146-020-01097-6
http://dx.doi.org/10.1016/j.jestch.2020.12.002
http://dx.doi.org/10.1145/3412816.3412818
http://dx.doi.org/10.1007/978-3-030-61470-6_25

Appl.

Sci. 2025, 15, 5208 29 of 33

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

Wilderen, L.J.G.W.v.; Neumann, C.; Rodrigues-Correia, A.; Kern-Michler, D.; Mielke, N.; Reinfelds, M.; Heckel, A.; Bredenbeck, J.
Picosecond activation of the DEACM photocage unravelled by VIS-pump-IR-probe spectroscopy. Phys. Chem. Chem. Phys. 2017,
19, 6487-6496.

Sarraf, M.; Razak, B.A.; Dabbagh, A.; Nasiri-Tabrizi, B.; Kasim, N.H.A.; Basirun, W.]. Optimizing PVD conditions for electrochem-
ical anodization growth of well-adherent Ta205 nanotubes on Ti-6Al-4V alloy. RSC Adv. 2016, 6, 78999-79015.

Cink, R.B.; Song, Y. Appropriating scientific vocabulary in chemistry laboratories: A multiple case study of four community
college students with diverse ethno-linguistic backgrounds. Chem. Educ. Res. Pract. 2016, 17, 604-617.

De Giacomo, G.; Gerevini, A.E.; Patrizi, F; Saetti, A.; Sardina, S. Agent planning programs. Artif. Intell. 2016, 231, 64-106.
[CrossRef]

Zangiabady, M.; Aguilar-Fuster, C.; Rubio-Loyola, J. A Virtual Network Migration Approach and Analysis for Enhanced Online
Virtual Network Embedding. In Proceedings of the 12th Conference on International Conference on Network and Service
Management, CNSM 2016, Montreal, QC, Canada, 31 October—4 November 2016; pp. 324-329.

Hohaus, T.; Gensch, I.; Kimmel, J.; Worsnop, D.R.; Kiendler-Scharr, A. Experimental determination of the partitioning coefficient
of 3-pinene oxidation products in SOAs. Phys. Chem. Chem. Phys. 2015, 17, 14796-14804.

Wu, Z,; Sekar, R; Hsieh, Sj. Study of factors impacting remote diagnosis performance on a PLC based automated system.
J. Manuf. Syst. 2014, 33, 589-603. [CrossRef]

Wagner, S.; Kronberger, G.; Beham, A.; Kommenda, M.; Scheibenpflug, A.; Pitzer, E.; Vonolfen, S.; Kofler, M.; Winkler, S.; Dorfer,
V., et al. Architecture and Design of the HeuristicLab Optimization Environment. In Advanced Methods and Applications in
Computational Intelligence; Topics in Intelligent Engineering and Informatics; Klempous, R., Nikodem, J., Jacak, W., Chaczko, Z.,
Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2014; Volume 6, pp. 197-261. [CrossRef]

Gaspar, V.; Madarész, L.; Andoga, R. Scientific Research Information System as a Solution for Assessing the Efficiency of Applied
Research. In Advances in Soft Computing, Intelligent Robotics and Control; Topics in Intelligent Engineering and Informatics; Fodor,
J., Fullér, R., Eds.; Springer International Publishing: Cham, Switzerland, 2014; Volume 8, pp. 273-293.

Alemi, O.; Polajnar, D.; Polajnar, J.; Mumbaiwala, D. A simulation framework for design-oriented studies of interaction
models in agent teamwork. In Proceedings of the 2014 Symposium on Agent Directed Simulation, ADS "14, Tampa, FL, USA,
13-16 April 2014.

Klarborg, B.; Lahrmann, H.; NielsAgerholm, n.; Tradisauskas, N.; Harms, L. Intelligent speed adaptation as an assistive device
for drivers with acquired brain injury: A single-case field experiment. Accid. Anal. Prev. 2012, 48, 57-62. [CrossRef]

Barisi¢, A.; Monteiro, P.; Amaral, V.; Goulado, M.; Monteiro, M. Patterns for evaluating usability of domain-specific languages. In
Proceedings of the 19th Conference on Pattern Languages of Programs, PLoP "12, Tucson, AZ, USA, 19-26 October 2012.
Soldatova, L.N.; Rzhetsky, A. Representation of research hypotheses. J. Biomed. Semant. 2011, 2, S9. [CrossRef]

Duff, A.; Sanchez Fibla, M.; Verschure, PF. A biologically based model for the integration of sensory-motor contingencies in rules
and plans: A prefrontal cortex based extension of the Distributed Adaptive Control architecture. Presence Brian, Virtual Real.
Robot. 2011, 85, 289-304. [CrossRef] [PubMed]

Wombacher, A. A-Posteriori Detection of Sensor Infrastructure Errors in Correlated Sensor Data and Business Workflows.
In Business Process Management; Lecture Notes in Computer Science; Rinderle-Ma, S., Toumani, F., Wolf, K., Eds.; Springer:
Berlin/Heidelberg, Germany, 2011; Volume 6896, pp. 329-344.

He, L.; Friedman, A.M.; Bailey-Kellogg, C. Algorithms for optimizing cross-overs in DNA shuffling. In Proceedings of the 2nd
ACM Conference on Bioinformatics, Computational Biology and Biomedicine, Chicago, IL, USA, 1-3 August 2011; BCB "11,
pp. 143-152.

Apgar, ].F; Witmer, D.K.; White, EM.; Tidor, B. Sloppy models, parameter uncertainty, and the role of experimental design. Mol.
Biosyst. 2010, 6, 1890-1900.

Sparkes, A.; King, R.D.; Aubrey, W.; Benway, M.; Byrne, E.; Clare, A.; Liakata, M.; Markham, M.; Whelan, K.E.; Young, M.; et al.
An Integrated Laboratory Robotic System for Autonomous Discovery of Gene Function. SLAS Technol. 2010, 15, 33-40. [CrossRef]
Barnaud, C.; Bousquet, E; Trebuil, G. Multi-agent simulations to explore rules for rural credit in a highland farming community
of Northern Thailand. Ecol. Econ. 2008, 66, 615-627. [CrossRef]

Yilmaz, L.; Davis, P; Fishwick, P.A.; Hu, X; Miller, ].A.; Hybinette, M.; Oren, T1L; Reynolds, P.; Sarjoughian, H.; Tolk, A. Sustaining
the growth and vitality of the M&S discipline. In Proceedings of the 40th Conference on Winter Simulation, Winter Simulation
Conference, WSC "08, Miami, FL, USA, 7-10 December 2008; pp. 677-688.

King, R.D.; Karwath, A.; Clare, A.; Dehaspe, L. Logic and the Automatic Acquisition of Scientific Knowledge: An Application
to Functional Genomics. In Computational Discovery of Scientific Knowledge; Lecture Notes in Computer Science; DZeroski, S.,
Todorovski, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4660, pp. 273-289. ISSN 0302-9743, 1611-3349.
[CrossRef]


http://dx.doi.org/10.1016/j.artint.2015.10.001
http://dx.doi.org/10.1016/j.jmsy.2014.05.007
http://dx.doi.org/10.1007/978-3-319-01436-4_10
http://dx.doi.org/10.1016/j.aap.2011.05.004
http://dx.doi.org/10.1186/2041-1480-2-S2-S9
http://dx.doi.org/10.1016/j.brainresbull.2010.11.008
http://www.ncbi.nlm.nih.gov/pubmed/21138760
http://dx.doi.org/10.1016/j.jala.2009.10.001
http://dx.doi.org/10.1016/j.ecolecon.2007.10.022
http://dx.doi.org/10.1007/978-3-540-73920-3_13

Appl.

Sci. 2025, 15, 5208 30 of 33

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

181.

Brandes, T.; Schwamborn, H.; Gerndt, M.; Jeitner, J.; Kereku, E.; Schulz, M.; Brunst, H.; Nagel, W.; Neumann, R.; Miiller-
Pfefferkorn, R.; et al. Monitoring cache behavior on parallel SMP architectures and related programming tools. Future Gener.
Comput. Syst. 2005, 21, 1298-1311. [CrossRef]

Whelan, K.E.; King, R.D. Intelligent software for laboratory automation. Trends Biotechnol. 2004, 22, 440-445. [CrossRef]

Kell, D.B.; Mendes, P. Snapshots of Systems. In Technological and Medical Implications of Metabolic Control Analysis; Cornish-Bowden,
A., Cardenas, M.L., Eds.; Springer: Dordrecht, The Netherlands, 2000; pp. 3-25. [CrossRef]

Ma, X.; Huo, Z.; Lu, J.; Wong, Y.D. Deep Forest with SHapley additive explanations on detailed risky driving behavior data for
freeway crash risk prediction. Eng. Appl. Artif. Intell. 2025, 141, 109787. [CrossRef]

Li, J.; Chen, H.; Wang, X.B.; Yang, Z.X. A comprehensive gear eccentricity dataset with multiple fault severity levels: Description,
characteristics analysis, and fault diagnosis applications. Mech. Syst. Signal Process. 2025, 224, 112068. [CrossRef]

Subasi, A.; Qaisar, S.M. Chapter 16—EEG-based emotion recognition using AR burg and ensemble machine learning models.
In Artificial Intelligence and Multimodal Signal Processing in Human-Machine Interaction; Subasi, A., Qaisar, S.M., Nisar, H., Eds.;
Academic Press: Cambridge, MA, USA, 2025; pp. 303-329. [CrossRef]

Liu, D.; Zhang, B.; Jiang, Y.; An, P; Chen, Z. Deep learning driven inverse solving method for neutron diffusion equations and
three-dimensional core power reconstruction technology. Nucl. Eng. Des. 2024, 429, 113590. [CrossRef]

Huang, J.; Huang, S.; Moghaddam, S.K.; Lu, Y,; Wang, G.; Yan, Y.; Shi, X. Deep Reinforcement Learning-Based Dynamic
Reconfiguration Planning for Digital Twin-Driven Smart Manufacturing Systems with Reconfigurable Machine Tools. IEEE Trans.
Ind. Inform. 2024, 20, 13135-13146. [CrossRef]

Anthony, B. Decentralized AloT based intelligence for sustainable energy prosumption in local energy communities: A citizen-
centric prosumer approach. Cities 2024, 152, 105198. [CrossRef]

Chang, W.; D’Ascenzo, N.; Antonecchia, E; Li, B.; Yang, J.; Mu, D.; Li, A.; Xie, Q. Deep denoiser prior driven relaxed iterated
Tikhonov method for low-count PET image restoration. Phys. Med. Biol. 2024, 69. [CrossRef] [PubMed]

Widanage, C.; Mohotti, D.; Lee, C.; Wijesooriya, K.; Meddage, D. Use of explainable machine learning models in blast load
prediction. Eng. Struct. 2024, 312, 118271. [CrossRef]

Schaefer, M.; Reichl, S.; ter Horst, R.; Nicolas, A.M.; Krausgruber, T.; Piras, F; Stepper, P; Bock, C.; Samwald, M. GPT-4 as a
biomedical simulator. Comput. Biol. Med. 2024, 178, 108796. [CrossRef]

Naseer, F; Khan, M.N.; Tahir, M.; Addas, A.; Aejaz, S.M.H. Integrating deep learning techniques for personalized learning
pathways in higher education. Heliyon 2024, 10, €32628. [CrossRef]

Amuzuga, P; Bennebach, M.; Iwaniack, J.L. Model reduction for fatigue life estimation of a welded joint driven by machine
learning. Heliyon 2024, 10, e30171. [CrossRef]

Wojnar, T.; Hryszko, J.; Roman, A. Mi-Go: Tool which uses YouTube as data source for evaluating general-purpose speech
recognition machine learning models. EURASIP |. Audio Speech Music Process. 2024, 2024, 24. [CrossRef]

Jiang, W.; Ding, L. Unsafe hoisting behavior recognition for tower crane based on transfer learning. Autom. Constr. 2024,
160, 105299. [CrossRef]

Guo, Y,; Yu, X;; Wang, Y,; Huang, K. Health prognostics of lithium-ion batteries based on universal voltage range features
mining and adaptive multi-Gaussian process regression with Harris Hawks optimization algorithm. Reliab. Eng. Syst. Saf. 2024,
244,109913. [CrossRef]

Guan, S.; Wang, Y,; Liu, L.; Gao, J.; Xu, Z.; Kan, S. Ultra-short-term wind power prediction method based on FTI-VACA-XGB
model. Expert Syst. Appl. 2024, 235, 121185. [CrossRef]

Hu, X,; Liu, J.; Li, H.; Liu, H.; Xue, X. An effective transformer based on dual attention fusion for underwater image enhancement.
Peer] Comput. Sci. 2024, 10, €1783. [CrossRef] [PubMed]

Fu, J.; Fang, R. Thermal Fault Warning of Turbine Generators Based on Cluster Heatmap CNN-GRU-Attention Method. In
Proceedings of the 9th International Symposium on Hydrogen Energy, Renewable Energy and Materials; Springer Proceedings in Physics;
Kolhe, M.L,, Liao, Q., Eds.; Springer Nature Singapore: Singapore, 2024; Volume 399, pp. 125-134.

Liu, D.; Wang, S.; Fan, Y.; Liang, Y.; Fernandez, C.; Stroe, D.I. State of energy estimation for lithium-ion batteries using adaptive
fuzzy control and forgetting factor recursive least squares combined with AEKF considering temperature. . Energy Storage 2023,
70, 108040. [CrossRef]

Okuda, K.; Nakajima, K.; Kitamura, C.; Ljungberg, M.; Hosoya, T.; Kirihara, Y.; Hashimoto, M. Machine learning-based prediction
of conversion coefficients for I-123 metaiodobenzylguanidine heart-to-mediastinum ratio. J. Nucl. Cardiol. Off. Publ. Am. Soc.
Nucl. Cardiol. 2023, 30, 1630-1641. [CrossRef]

Muckley, E.S.; Vasudevan, R.; Sumpter, B.G.; Advincula, R.C.; Ivanov, LN. Machine Intelligence-Centered System for Automated
Characterization of Functional Materials and Interfaces. ACS Appl. Mater. Interfaces 2023, 15, 2329-2340.

Foroughi, P.; Brockners, F.; Rougier, ].L. ADT: Al-Driven network Telemetry processing on routers. Comput. Netw. 2023,
220,109474. [CrossRef]


http://dx.doi.org/10.1016/j.future.2004.09.005
http://dx.doi.org/10.1016/j.tibtech.2004.07.010
http://dx.doi.org/10.1007/978-94-011-4072-0_1
http://dx.doi.org/10.1016/j.engappai.2024.109787
http://dx.doi.org/10.1016/j.ymssp.2024.112068
http://dx.doi.org/10.1016/B978-0-443-29150-0.00012-3
http://dx.doi.org/10.1016/j.nucengdes.2024.113590
http://dx.doi.org/10.1109/TII.2024.3431095
http://dx.doi.org/10.1016/j.cities.2024.105198
http://dx.doi.org/10.1088/1361-6560/ad67a3
http://www.ncbi.nlm.nih.gov/pubmed/39053501
http://dx.doi.org/10.1016/j.engstruct.2024.118271
http://dx.doi.org/10.1016/j.compbiomed.2024.108796
http://dx.doi.org/10.1016/j.heliyon.2024.e32628
http://dx.doi.org/10.1016/j.heliyon.2024.e30171
http://dx.doi.org/10.1186/s13636-024-00343-9
http://dx.doi.org/10.1016/j.autcon.2024.105299
http://dx.doi.org/10.1016/j.ress.2023.109913
http://dx.doi.org/10.1016/j.eswa.2023.121185
http://dx.doi.org/10.7717/peerj-cs.1783
http://www.ncbi.nlm.nih.gov/pubmed/38855239
http://dx.doi.org/10.1016/j.est.2023.108040
http://dx.doi.org/10.1007/s12350-023-03198-3
http://dx.doi.org/10.1016/j.comnet.2022.109474

Appl.

Sci. 2025, 15, 5208 310f33

182.

183.

184.

185.

186.

187.

188.

189.

190.

191.

192.

193.

194.

195.

196.

197.

198.

199.

200.

201.

202.

203.

204.

205.

206.

Bertin, P.; Rector-Brooks, J.; Sharma, D.; Gaudelet, T.; Anighoro, A.; Gross, T.; Martinez-Pefia, F,; Tang, E.L.; Suraj, M.; Regep, C.;
et al. RECOVER identifies synergistic drug combinations in vitro through sequential model optimization. Cell Rep. Methods 2023,
3, 100599. [CrossRef]

Ghasemi, M.; Hasani Zonoozi, M.; Rezania, N.; Saadatpour, M. Predicting coagulation-flocculation process for turbidity removal
from water using graphene oxide: A comparative study on ANN, SVR, ANFIS, and RSM models. Environ. Sci. Pollut. Res. Int.
2022, 29, 72839-72852. [CrossRef]

Cao, L.; Su, J.; Wang, Y.; Cao, Y;; Siang, L.C.; Li, J.; Saddler, ].N.; Gopaluni, B. Causal Discovery Based on Observational Data and
Process Knowledge in Industrial Processes. Ind. Eng. Chem. Res. 2022, 61, 14272-14283.

Novitski, P.; Cohen, C.M.; Karasik, A.; Shalev, V.; Hodik, G.; Moskovitch, R. All-cause mortality prediction in T2D patients with
iTirps. Artif. Intell. Med. 2022, 130, 102325. [CrossRef]

Guevarra, D.; Zhou, L.; Richter, M.H.; Shinde, A.; Chen, D.; Gomes, C.P; Gregoire, ].M. Materials structure-property factorization
for identification of synergistic phase interactions in complex solar fuels photoanodes. NPJ Comput. Mater. 2022, 8, 57. [CrossRef]
Zhang, Y.; Xiao, B.; Al-Hussein, M.; Li, X. Prediction of human restorative experience for human-centered residential architecture
design: A non-immersive VR—DOE-based machine learning method. Autom. Constr. 2022, 136, 104189. [CrossRef]

Seifrid, M.; Hickman, R.J.; Aguilar-Granda, A.; Lavigne, C.; Vestfrid, J.; Wu, T.C.; Gaudin, T.; Hopkins, E.J.; Aspuru-Guzik, A.
Routescore: Punching the Ticket to More Efficient Materials Development. ACS Cent. Sci. 2022, 8, 122-131.

Lang, S.; Reggelin, T.; Schmidyt, J.; Miiller, M.; Nahhas, A. NeuroEvolution of augmenting topologies for solving a two-stage
hybrid flow shop scheduling problem: A comparison of different solution strategies. Expert Syst. Appl. 2021, 172, 114666.
[CrossRef]

Gu, P; Lan, X; Li, S. Object Detection Combining CNN and Adaptive Color Prior Features. Sensors 2021, 21, 2796. [CrossRef]
Lucchese, L.V,; de Oliveira, G.G.; Pedrollo, O.C. Investigation of the influence of nonoccurrence sampling on landslide
susceptibility assessment using Artificial Neural Networks. CATENA 2021, 198, 105067. [CrossRef]

Higgins, K.; Valleti, S.M.; Ziatdinov, M.; Kalinin, S.V.; Ahmadi, M. Chemical Robotics Enabled Exploration of Stability in
Multicomponent Lead Halide Perovskites via Machine Learning. ACS Energy Lett. 2020, 5, 3426-3436.

Rohr, B,; Stein, H.S.; Guevarra, D.; Wang, Y.; Haber, J.A.; Aykol, M.; Suram, S.K.; Gregoire, ].M. Benchmarking the acceleration of
materials discovery by sequential learning. Chem. Sci. 2020, 11, 2696-2706. [CrossRef]

Ghnatios, C.; Hage, R.M.; Hage, I. An efficient Tabu-search optimized regression for data-driven modeling. Data-Based Eng. Sci.
Technol. 2019, 347, 806-816. [CrossRef]

Feng, N.; Wang, H.; Hu, E; Gouda, M.A.; Gong, ].; Wang, F. A fiber-reinforced human-like soft robotic manipulator based on
SsEMG force estimation. Eng. Appl. Artif. Intell. 2019, 86, 56-67. [CrossRef]

Hoef, S.V.D.; Mértensson, J.; Dimarogonas, D.V.; Johansson, K.H. A Predictive Framework for Dynamic Heavy-Duty Vehicle
Platoon Coordination. ACM Trans. Cyber-Phys. Syst. 2019, 4.

Chaudhuri, T.; Soh, Y.C.; Li, H.; Xie, L. A feedforward neural network based indoor-climate control framework for thermal
comfort and energy saving in buildings. Appl. Energy 2019, 248, 44-53. [CrossRef]

Rodrigues, A.; Rodrigues, G.N.; Knauss, A.; Ali, R.; Andrade, H. Enhancing context specifications for dependable adaptive
systems: A data mining approach. Inf. Softw. Technol. 2019, 112, 115-131. [CrossRef]

Oliveira, P.; Santos Neto, P,; Britto, R.; Rabélo, R.; Braga, R.; Souza, M. ClaaS—computational intelligence as a service with
Athena. Comput. Lang. Syst. Struct. 2018, 54, 95-118. [CrossRef]

Navarro, L.C.; Navarro, A.K.; Rocha, A.; Dahab, R. Connecting the dots: Toward accountable machine-learning printer attribution
methods. J. Vis. Commun. Image Represent. 2018, 53, 257-272. [CrossRef]

Fagerholm, F; Sanchez Guinea, A.; Mienpéad, H.; Miinch, J. The RIGHT model for Continuous Experimentation. . Syst. Softw.
2017, 123, 292-305. [CrossRef]

Taghavifar, H.; Mardani, A. On the modeling of energy efficiency indices of agricultural tractor driving wheels applying adaptive
neuro-fuzzy inference system. |. Terramechanics 2014, 56, 37-47. [CrossRef]

Kowalski, K.C.; He, B.D.; Srinivasan, L. Dynamic analysis of naive adaptive brain-machine interfaces. Neural Comput. 2013,
25,2373-2420. [CrossRef]

Vidal, S.A.; Marcos, C.A. Toward automated refactoring of crosscutting concerns into aspects. J. Syst. Softw. 2013, 86, 1482-1497.
[CrossRef]

Olejnik-Krugty, A.; Rézewski, P.; Zaikin, O.; Sienkiewicz, P. Approach for color management in printing process in open
manufacturing systems. 7th Ifac Conf. Manuf. Model. Manag. Control 2013, 46, 2104-2109. [CrossRef]

Westermann, D.; Happe, ].; Krebs, R.; Farahbod, R. Automated inference of goal-oriented performance prediction functions. In
Proceedings of the 27th IEEE/ACM International Conference on Automated Software Engineering, ASE 12, Essen, Germany, 3-7
September 2012; pp. 190-199.


http://dx.doi.org/10.1016/j.crmeth.2023.100599
http://dx.doi.org/10.1007/s11356-022-20989-2
http://dx.doi.org/10.1016/j.artmed.2022.102325
http://dx.doi.org/10.1038/s41524-022-00747-1
http://dx.doi.org/10.1016/j.autcon.2022.104189
http://dx.doi.org/10.1016/j.eswa.2021.114666
http://dx.doi.org/10.3390/s21082796
http://dx.doi.org/10.1016/j.catena.2020.105067
http://dx.doi.org/10.1039/C9SC05999G
http://dx.doi.org/10.1016/j.crme.2019.11.006
http://dx.doi.org/10.1016/j.engappai.2019.08.016
http://dx.doi.org/10.1016/j.apenergy.2019.04.065
http://dx.doi.org/10.1016/j.infsof.2019.04.011
http://dx.doi.org/10.1016/j.cl.2018.04.003
http://dx.doi.org/10.1016/j.jvcir.2018.04.002
http://dx.doi.org/10.1016/j.jss.2016.03.034
http://dx.doi.org/10.1016/j.jterra.2014.08.002
http://dx.doi.org/10.1162/NECO_a_00484
http://dx.doi.org/10.1016/j.jss.2012.12.045
http://dx.doi.org/10.3182/20130619-3-RU-3018.00396

Appl.

Sci. 2025, 15, 5208 32 0f33

207.

208.
209.

210.

211.

212.

213.

214.

215.

216.

217.

218.

219.

220.

221.

222.

223.

224.

225.

226.

227.

228.

229.

230.

231.

232.

Krzhizhanovskaya, V.; Shirshov, G.; Melnikova, N.; Belleman, R.; Rusadi, F,; Broekhuijsen, B.; Gouldby, B.; Lhomme, ].; Balis, B.;
Bubak, M.; et al. Flood early warning system: Design, implementation and computational modules. Procedia Comput. Sci. 2011,
4,106-115. [CrossRef]

Seeger, M.W. Bayesian Inference and Optimal Design for the Sparse Linear Model. |. Mach. Learn. Res. 2008, 9, 759-813.
Kubera, Y.; Mathieu, P; Picault, S. Interaction Selection Ambiguities in Multi-agent Systems. In Proceedings of the 2008
IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology—Volume 02, WI-IAT 08,
Washington, DC, USA, 9-12 December 2008; pp. 75-78. [CrossRef]

Ince, H.; Trafalis, T.B. A hybrid model for exchange rate prediction. Decis. Support Syst. 2006, 42, 1054-1062. [CrossRef]

Awate, S.P; Tasdizen, T.; Foster, N.; Whitaker, R.T. Adaptive Markov modeling for mutual-information-based, unsupervised MRI
brain-tissue classification. Med. Image Anal. 2006, 10, 726-739. [CrossRef] [PubMed]

Cheng, S.; Sabes, PN. Modeling sensorimotor learning with linear dynamical systems. Neural Comput. 2006, 18, 760-793.
[CrossRef] [PubMed]

Terada, J.; Vo, H.; Joslin, D. Combining genetic algorithms with squeaky-wheel optimization. In Proceedings of the 8th Annual
Conference on Genetic and Evolutionary Computation, GECCO ‘06, Seattle, WA, USA, 8-12 July 2006; pp. 1329-1336.

Joslin, D.; Poole, W. Agent-based simulation for software project planning. In Proceedings of the 37th Conference on Winter
Simulation, Winter Simulation Conference, WSC ’05, Orlando, FL, USA, 4-7 December 2005; pp. 1059-1066.

Wai, RJ.; Lin, CM.; Peng, Y.E. Adaptive hybrid control for linear piezoelectric ceramic motor drive using diagonal recurrent
CMAC network. IEEE Trans. Neural Netw. 2004, 15, 1491-1506. [CrossRef]

Adams, F; McDannald, A.; Takeuchi, I.; Kusne, A.G. Human-in-the-loop for Bayesian autonomous materials phase mapping.
Matter 2024, 7, 697-709. [CrossRef]

Aldeghi, M.; Hase, F; Hickman, R.J.; Tamblyn, I.; Aspuru-Guzik, A. Golem: An algorithm for robust experiment and process
optimization. Chem. Sci. 2021, 12, 14792-14807. [CrossRef]

Hickman, R.J.; Aldeghi, M.; Hase, F.; Aspuru-Guzik, A. Bayesian optimization with known experimental and design constraints
for chemistry applications. Digit. Discov. 2022, 1, 732-744. [CrossRef]

Schilter, O.; Gutierrez, D.P.; Folkmann, L.M.; Castrogiovanni, A.; Garcfa-Durdn, A.; Zipoli, E; Roch, L.M.; Laino, T. Combining
Bayesian optimization and automation to simultaneously optimize reaction conditions and routes. Chem. Sci. 2024, 15, 7732-7741.
[CrossRef]

Epps, RW.,; Volk, A.A_; Reyes, K.G.; Abolhasani, M. Accelerated Al development for autonomous materials synthesis in flow.
Chem. Sci. 2021, 12, 6025-6036. [CrossRef]

Plommer, H.; Betinol, 1.O.; Dupree, T.; Roggen, M.; Reid, ].P. Extraction yield prediction for the large-scale recovery of
cannabinoids. Digit. Discov. 2024, 3, 155-162.

Eyke, N.S.; Green, W.H.; Jensen, K.F. Iterative experimental design based on active machine learning reduces the experimental
burden associated with reaction screening. React. Chem. Eng. 2020, 5, 1963-1972.

Waelder, R.; Park, C.; Sloan, A.; Carpena-Nufiez, J.; Yoho, J.; Gorsse, S.; Rao, R.; Maruyama, B. Improved understanding of carbon
nanotube growth via autonomous jump regression targeting of catalyst activity. Carbon 2024, 228, 119356. [CrossRef]

Yoon, ].W.; Kumar, A.; Kumar, P.; Hippalgaonkar, K.; Senthilnath, J.; Chellappan, V. Explainable machine learning to enable
high-throughput electrical conductivity optimization and discovery of doped conjugated polymers. Knowl.-Based Syst. 2024,
295,111812. [CrossRef]

Fu, W.; Chien, C.E,; Chen, C.H. Advanced quality control for probe precision forming to empower virtual vertical integration for
semiconductor manufacturing. Comput. Ind. Eng. 2023, 183, 109461. [CrossRef]

Lai, N.S.; Tew, Y.S.; Zhong, X.; Yin, J.; Li, ].; Yan, B.; Wang, X. Artificial Intelligence (AI) Workflow for Catalyst Design and
Optimization. Ind. Eng. Chem. Res. 2023, 62, 17835-17848.

Yonge, A.; Gusmao, G.S.; Fushimi, R.; Medford, A.J. Model-Based Design of Experiments for Temporal Analysis of Products
(TAP): A Simulated Case Study in Oxidative Propane Dehydrogenation. Ind. Eng. Chem. Res. 2024, 63, 4756-4770.

Almeida, A.F,; Branco, S.; Carvalho, L.C.R.; Dias, A.R.M,; Leitao, E.P.T.; Loureiro, RM.S.; Lucas, S.D.; Mendonga, R.F; Oliveira, R.;
Rocha, IL.D.; et al. Benchmarking Strategies of Sustainable Process Chemistry Development: Human-Based, Machine Learning,
and Quantum Mechanics. Org. Process Res. Dev. 2024. [CrossRef]

Almeida, A.F; Ataide, FA.P,; Loureiro, RM.S.; Moreira, R.; Rodrigues, T. Augmenting Adaptive Machine Learning with Kinetic
Modeling for Reaction Optimization. J. Org. Chem. 2021, 86, 14192-14198.

Bosten, E.; Pardon, M.; Chen, K.; Koppen, V.; Van Herck, G.; Hellings, M.; Cabooter, D. Assisted Active Learning for Model-Based
Method Development in Liquid Chromatography. Anal. Chem. 2024, 96, 13699-13709.

Liang, W.; Zheng, S.; Shu, Y.; Huang, ]. Machine Learning Optimizing Enzyme/ZIF Biocomposites for Enhanced Encapsulation
Efficiency and Bioactivity. JACS Au 2024, 4, 3170-3182.

Cruse, K,; Baibakova, V.; Abdelsamie, M.; Hong, K.; Bartel, C.J.; Trewartha, A.; Jain, A.; Sutter-Fella, C.M.; Ceder, G. Text Mining
the Literature to Inform Experiments and Rationalize Impurity Phase Formation for BiFeO3. Chem. Mater. 2024, 36, 772-785.


http://dx.doi.org/10.1016/j.procs.2011.04.012
http://dx.doi.org/10.1109/WIIAT.2008.260
http://dx.doi.org/10.1016/j.dss.2005.09.001
http://dx.doi.org/10.1016/j.media.2006.07.002
http://www.ncbi.nlm.nih.gov/pubmed/16919993
http://dx.doi.org/10.1162/neco.2006.18.4.760
http://www.ncbi.nlm.nih.gov/pubmed/16494690
http://dx.doi.org/10.1109/TNN.2004.837784
http://dx.doi.org/10.1016/j.matt.2024.01.005
http://dx.doi.org/10.1039/D1SC01545A
http://dx.doi.org/10.1039/D2DD00028H
http://dx.doi.org/10.1039/D3SC05607D
http://dx.doi.org/10.1039/D0SC06463G
http://dx.doi.org/10.1016/j.carbon.2024.119356
http://dx.doi.org/10.1016/j.knosys.2024.111812
http://dx.doi.org/10.1016/j.cie.2023.109461
http://dx.doi.org/10.1021/acs.oprd.4c00164

Appl.

Sci. 2025, 15, 5208 33 0f 33

233.

234.

235.

236.

237.

238.

Dama, A.C,; Kim, K.S; Leyva, D.M.; Lunkes, A.P.; Schmid, N.S; Jijakli, K.; Jensen, P.A. Bacter Al maps microbial metabolism
without prior knowledge. Nat. Microbiol. 2023, 8, 1018-1025. [CrossRef] [PubMed]

Suvarna, M.; Zou, T.; Chong, S.H.; Ge, Y.; Martin, A.].; Pérez-Ramirez, ]. Active learning streamlines development of high
performance catalysts for higher alcohol synthesis. Nat. Commun. 2024, 15, 5844. [CrossRef]

Chen, J.; Hou, J.; Wong, K.C. Categorical Matrix Completion With Active Learning for High-Throughput Screening. IEEE/ACM
Trans. Comput. Biol. Bioinform. 2020, 18, 2261-2270.

Wang, Y.; Yao, Q.; Kwok, ].T.; Ni, L.M. Generalizing from a few examples: A survey on few-shot learning. ACM Comput. Surv.
(Csur) 2020, 53, 1-34. [CrossRef]

Biswas, A.; Md Abdullah Al N.; Imran, A ; Sejuty, A.T.; Fairooz, F; Puppala, S.; Talukder, S. Generative adversarial networks for
data augmentation. In Data Driven Approaches on Medical Imaging; Springer: Berlin/Heidelberg, Germany, 2023; pp. 159-177.
Schumann, R.; Rehbein, I. Active learning via membership query synthesis for semi-supervised sentence classification. In
Proceedings of the 23rd conference on computational natural language learning (CoNLL), Hong Kong, China, 34 November
2019; pp. 472-481.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://dx.doi.org/10.1038/s41564-023-01376-0
http://www.ncbi.nlm.nih.gov/pubmed/37142775
http://dx.doi.org/10.1038/s41467-024-50215-1
http://dx.doi.org/10.1145/3386252

	Introduction
	Methodology
	Search Strategy
	Filtering
	Application of Filter Criteria
	Filter Criterion 1
	Filter Criterion 2
	Filter Criterion 3
	Filter Criterion 4

	Taxonomy

	Results
	Domains of Application
	AI Methodologies for Experimental Design
	Single Approaches
	Hybrid Approaches
	Summary

	Degree of Automation
	Kind of Data
	Online Capability
	Generalization Ability
	Discussion

	Conclusions
	References

